Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 409(5): 1405-1413, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27900420

RESUMO

The nuclear magnetic resonance (NMR)-based metabolomic approach was used as analytical methodology to study the urine samples of chronic inflammatory rheumatic disease (CIRD) patients. The urine samples of CIRD patients were compared to the ones of both healthy subjects and patients with multiple sclerosis (MS), another immuno-mediated disease. Urine samples collected from 39 CIRD patients, 25 healthy subjects, and 26 MS patients were analyzed using 1H NMR spectroscopy, and the NMR spectra were examined using partial least squares-discriminant analysis (PLS-DA). PLS-DA models were validated by a double cross-validation procedure and randomization tests. Clear discriminations between CIRD patients and healthy controls (average diagnostic accuracy 83.5 ± 1.9%) as well as between CIRD patients and MS patients (diagnostic accuracy 81.1 ± 1.9%) were obtained. Leucine, alanine, 3-hydroxyisobutyric acid, hippuric acid, citric acid, 3-hydroxyisovaleric acid, and creatinine contributed to the discrimination; all of them being in a lower concentration in CIRD patients as compared to controls or to MS patients. The application of NMR metabolomics to study these still poorly understood diseases can be useful to better clarify the pathologic mechanisms; moreover, as a holistic approach, it allowed the detection of, by means of anomalous metabolic traits, the presence of other pathologies or pharmaceutical treatments not directly connected to CIRDs, giving comprehensive information on the general health state of individuals. Graphical abstract NMR-based metabolomic approach as a tool to study urine samples in CIRD patients with respect to MS patients and healthy controls.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metabolômica , Doenças Reumáticas/urina , Adulto , Estudos de Casos e Controles , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/urina
2.
Phys Chem Chem Phys ; 19(14): 9617-9624, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28346555

RESUMO

It is highly desirable that supramolecular polymers self-assemble following small changes in the environment. The degree of responsiveness depends on the degree of cooperativity at play during the assembly. Understanding how to modulate and quantify cooperativity is therefore highly desirable for the study and design of responsive polymers. Here we show that the cooperative assembly of a porphyrin-based, double-stranded polymer is triggered by changes in building blocks and in salt concentration. We develop a model that accounts for this responsiveness by assuming the binding of the salt countercations to the double-stranded polymer. Using our assembly model we generate plots that show the increase in concentration of polymer versus the normalized concentration of monomer. These plots are ideally suited to appreciate changes in cooperativity, and show that, for our system, these changes are consistent with the increase in polymer length observed experimentally. Unexpectedly, we find that polymer stability increases when cooperativity decreases. We attribute this behaviour to the fact that increasing salt concentration stabilizes the overall polymer more than the nucleus. In other words, the cooperativity factor α, defined as the ratio between the growth constant Kg and the nucleation constant Kn decreases as the overall stability of the polymer increases. Using our model to simulate the data, we generate cooperativity plots to explore changes in cooperativity for multistranded polymers. We find that, for the same pairwise association constants, the cooperativity sharply increases with the number of strands in the polymer. We attribute this dependence to the fact that the larger the number of strands, the larger is the nucleus necessary to trigger polymer growth. We show therefore that the cooperativity factor α does not properly account for the cooperativity behaviour of multistranded polymers, or any supramolecular polymer with a nucleus composed of more than 2 building blocks, and propose the use of the corrected cooperativity factor αm. Finally, we show that multistranded polymers display highly cooperative polymerisation with pairwise association constants as low as 10 M-1 between the building blocks, which should simplify the design of responsive supramolecular polymers.

3.
Adv Healthc Mater ; 11(24): e2200481, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35815530

RESUMO

The ultimate objective of tissue engineering is to fabricate artificial living constructs with a structural organization and function that faithfully resembles their native tissue counterparts. For example, the deep zone of articular cartilage possesses a distinctive anisotropic architecture with chondrocytes organized in aligned arrays ≈1-2 cells wide, features that are oriented parallel to surrounding extracellular matrix fibers and orthogonal to the underlying subchondral bone. Although there are major advances in fabricating custom tissue architectures, it remains a significant technical challenge to precisely recreate such fine cellular features in vitro. Here, it is shown that ultrasound standing waves can be used to remotely organize living chondrocytes into high-resolution anisotropic arrays, distributed throughout the full volume of agarose hydrogels. It is demonstrated that this cytoarchitecture is maintained throughout a five-week course of in vitro tissue engineering, producing hyaline cartilage with cellular and extracellular matrix organization analogous to the deep zone of native articular cartilage. It is anticipated that this acoustic cell patterning method will provide unprecedented opportunities to interrogate in vitro the contribution of chondrocyte organization to the development of aligned extracellular matrix fibers, and ultimately, the design of new mechanically anisotropic tissue grafts for articular cartilage regeneration.


Assuntos
Cartilagem Articular , Engenharia Tecidual , Condrócitos , Cartilagem Hialina , Acústica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA