Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485256

RESUMO

The ventral pallidum (VP) is a central hub in the reward circuitry with diverse projections that have different behavioral roles attributed mostly to the connectivity with the downstream target. However, different VP projections may represent, as in the striatum, separate neuronal populations that differ in more than just connectivity. In this study, we performed in mice of both sexes a multimodal dissection of four major projections of the VP-to the lateral hypothalamus (VP→LH), ventral tegmental area (VP→VTA), lateral habenula (VP→LHb), and mediodorsal thalamus (VP→MDT)-with physiological, anatomical, genetic, and behavioral tools. We also tested for physiological differences between VP neurons receiving input from nucleus accumbens medium spiny neurons (MSNs) that express either the D1 (D1-MSNs) or the D2 (D2-MSNs) dopamine receptor. We show that each VP projection (1) when inhibited during a cocaine conditioned place preference (CPP) test affects performance differently, (2) receives a different pattern of inputs using rabies retrograde labeling, (3) shows differentially expressed genes using RNA sequencing, and (4) has projection-specific characteristics in excitability and synaptic input characteristics using whole-cell patch clamp. VP→LH and VP→VTA projections have different effects on CPP and show low overlap in circuit tracing experiments, as VP→VTA neurons receive more striatal input, while VP→LH neurons receive more olfactory input. Additionally, VP→VTA neurons are less excitable, while VP→LH neurons are more excitable than the average VP neuron, a difference driven mainly by D2-MSN-responding neurons. Thus, VP→VTA and VP→LH neurons may represent largely distinct populations of VP neurons.


Assuntos
Prosencéfalo Basal , Cocaína , Vias Neurais , Recompensa , Animais , Camundongos , Prosencéfalo Basal/fisiologia , Masculino , Cocaína/farmacologia , Cocaína/administração & dosagem , Feminino , Vias Neurais/fisiologia , Camundongos Endogâmicos C57BL , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Área Tegmentar Ventral/fisiologia , Área Tegmentar Ventral/citologia
2.
Mol Psychiatry ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879719

RESUMO

Substance use disorders (SUD) and drug addiction are major threats to public health, impacting not only the millions of individuals struggling with SUD, but also surrounding families and communities. One of the seminal challenges in treating and studying addiction in human populations is the high prevalence of co-morbid conditions, including an increased risk of contracting a human immunodeficiency virus (HIV) infection. Of the ~15 million people who inject drugs globally, 17% are persons with HIV. Conversely, HIV is a risk factor for SUD because chronic pain syndromes, often encountered in persons with HIV, can lead to an increased use of opioid pain medications that in turn can increase the risk for opioid addiction. We hypothesize that SUD and HIV exert shared effects on brain cell types, including adaptations related to neuroplasticity, neurodegeneration, and neuroinflammation. Basic research is needed to refine our understanding of these affected cell types and adaptations. Studying the effects of SUD in the context of HIV at the single-cell level represents a compelling strategy to understand the reciprocal interactions among both conditions, made feasible by the availability of large, extensively-phenotyped human brain tissue collections that have been amassed by the Neuro-HIV research community. In addition, sophisticated animal models that have been developed for both conditions provide a means to precisely evaluate specific exposures and stages of disease. We propose that single-cell genomics is a uniquely powerful technology to characterize the effects of SUD and HIV in the brain, integrating data from human cohorts and animal models. We have formed the Single-Cell Opioid Responses in the Context of HIV (SCORCH) consortium to carry out this strategy.

3.
Proc Natl Acad Sci U S A ; 119(32): e2114758119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921439

RESUMO

Histone acetylation is a key component in the consolidation of long-term fear memories. Histone acetylation is fueled by acetyl-coenzyme A (acetyl-CoA), and recently, nuclear-localized metabolic enzymes that produce this metabolite have emerged as direct and local regulators of chromatin. In particular, acetyl-CoA synthetase 2 (ACSS2) mediates histone acetylation in the mouse hippocampus. However, whether ACSS2 regulates long-term fear memory remains to be determined. Here, we show that Acss2 knockout is well tolerated in mice, yet the Acss2-null mouse exhibits reduced acquisition of long-term fear memory. Loss of Acss2 leads to reductions in both histone acetylation and expression of critical learning and memory-related genes in the dorsal hippocampus, specifically following fear conditioning. Furthermore, systemic administration of blood-brain barrier-permeable Acss2 inhibitors during the consolidation window reduces fear-memory formation in mice and rats and reduces anxiety in a predator-scent stress paradigm. Our findings suggest that nuclear acetyl-CoA metabolism via ACSS2 plays a critical, previously unappreciated, role in the formation of fear memories.


Assuntos
Acetato-CoA Ligase , Acetilcoenzima A , Condicionamento Clássico , Medo , Histonas , Consolidação da Memória , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Animais , Condicionamento Clássico/fisiologia , Medo/fisiologia , Hipocampo/enzimologia , Histonas/metabolismo , Camundongos , Camundongos Knockout , Ratos
4.
J Neurosci ; 43(3): 405-418, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36443000

RESUMO

Altered activity of the ventral pallidum (VP) underlies disrupted motivation in stress and drug exposure. The VP is a very heterogeneous structure composed of many neuron types with distinct physiological properties and projections. Neuronal PAS 1-positive (Npas1+) VP neurons are thought to send projections to brain regions critical for motivational behavior. While Npas1+ neurons have been characterized in the globus pallidus external, there is limited information on these neurons in the VP. To address this limitation, we evaluated the projection targets of the VP Npas1+ neurons and performed RNA-sequencing on ribosome-associated mRNA from VP Npas1+ neurons to determine their molecular identity. Finally, we used a chemogenetic approach to manipulate VP Npas1+ neurons during social defeat stress (SDS) and behavioral tasks related to anxiety and motivation in Npas1-Cre mice. We used a similar approach in females using the chronic witness defeat stress (CWDS). We identified VP Npas1+ projections to the nucleus accumbens, ventral tegmental area, medial and lateral habenula, lateral hypothalamus, thalamus, medial and lateral septum, and periaqueductal gray area. VP Npas1+ neurons displayed distinct translatome representing distinct biological processes. Chemogenetic activation of hM3D(Gq) receptors in VP Npas1+ neurons increased susceptibility to a subthreshold SDS and anxiety-like behavior in the elevated plus maze and open field while the activation of hM4D(Gi) receptors in VP Npas1+ neurons enhanced resilience to chronic SDS and CWDS. Thus, the activity of VP Npas1+ neurons modulates susceptibility to social stressors and anxiety-like behavior. Our studies provide new information on VP Npas1+ neuron circuitry, molecular identity, and their role in stress response.SIGNIFICANCE STATEMENT The ventral pallidum (VP) is a structure connected to both reward-related and aversive brain centers. It is a key brain area that signals the hedonic value of natural rewards. Disruption in the VP underlies altered motivation in stress and substance use disorder. However, VP is a very heterogeneous area with multiple neuron subtypes. This study characterized the projection pattern and molecular signatures of VP Neuronal PAS 1-positive (Npas1+) neurons. We further used tools to alter receptor signaling in VP Npas1+ neurons in stress to demonstrate a role for these neurons in stress behavioral outcomes. Our studies have implications for understanding brain cell type identities and their role in brain disorders, such as depression, a serious disorder that is precipitated by stressful events.


Assuntos
Prosencéfalo Basal , Feminino , Camundongos , Animais , Prosencéfalo Basal/fisiologia , Neurônios/fisiologia , Área Tegmentar Ventral/fisiologia , Núcleo Accumbens/metabolismo , Recompensa , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
5.
Nat Rev Neurosci ; 20(3): 133-147, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30696992

RESUMO

In the past few decades, the field of neuroepigenetics has investigated how the brain encodes information to form long-lasting memories that lead to stable changes in behaviour. Activity-dependent molecular mechanisms, including, but not limited to, histone modification, DNA methylation and nucleosome remodelling, dynamically regulate the gene expression required for memory formation. Recently, the field has begun to examine how a learning experience is integrated at the level of both chromatin structure and synaptic physiology. Here, we provide an overview of key established epigenetic mechanisms that are important for memory formation. We explore how epigenetic mechanisms give rise to stable alterations in neuronal function by modifying synaptic structure and function, and highlight studies that demonstrate how manipulating epigenetic mechanisms may push the boundaries of memory.


Assuntos
Encéfalo/fisiologia , Epigênese Genética , Epigenoma , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Metilação de DNA , Humanos , Memória/fisiologia
6.
J Neurosci ; 39(14): 2745-2761, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30737312

RESUMO

The bed nucleus of the stria terminalis (BNST) is part of the limbic-hypothalamic system important for behavioral responses to stress, and glutamate transmission within this region has been implicated in the neurobiology of alcoholism. Herein, we used a combination of immunoblotting, neuropharmacological and transgenic procedures to investigate the role for metabotropic glutamate receptor 5 (mGlu5) signaling within the BNST in excessive drinking. We discovered that mGlu5 signaling in the BNST is linked to excessive alcohol consumption in a manner distinct from behavioral or neuropharmacological endophenotypes that have been previously implicated as triggers for heavy drinking. Our studies demonstrate that, in male mice, a history of chronic binge alcohol-drinking elevates BNST levels of the mGlu5-scaffolding protein Homer2 and activated extracellular signal-regulated kinase (ERK) in an adaptive response to limit alcohol consumption. Male and female transgenic mice expressing a point mutation of mGlu5 that cannot be phosphorylated by ERK exhibit excessive alcohol-drinking, despite greater behavioral signs of alcohol intoxication and reduced anxiety, and are insensitive to local manipulations of signaling in the BNST. These transgenic mice also show selective insensitivity to alcohol-aversion and increased novelty-seeking, which may be relevant to excessive drinking. Further, the insensitivity to alcohol-aversion exhibited by male mice can be mimicked by the local inhibition of ERK signaling within the BNST. Our findings elucidate a novel mGluR5-linked signaling state within BNST that plays a central and unanticipated role in excessive alcohol consumption.SIGNIFICANCE STATEMENT The bed nucleus of the stria terminalis (BNST) is part of the limbic-hypothalamic system important for behavioral responses to stress and alcohol, and glutamate transmission within BNST is implicated in the neurobiology of alcoholism. The present study provides evidence that a history of excessive alcohol drinking increases signaling through the metabotropic glutamate receptor 5 (mGlu5) receptor within the BNST in an adaptive response to limit alcohol consumption. In particular, disruption of mGlu5 phosphorylation by extracellular signal-regulated kinase within this brain region induces excessive alcohol-drinking, which reflects a selective insensitivity to the aversive properties of alcohol intoxication. These data indicate that a specific signaling state of mGlu5 within BNST plays a central and unanticipated role in excessive alcohol consumption.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/psicologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Núcleos Septais/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosforilação/fisiologia
7.
Eur J Neurosci ; 43(5): 689-702, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26742098

RESUMO

Methamphetamine (MA) is a widely misused, highly addictive psychostimulant that elicits pronounced deficits in neurocognitive function related to hypo-functioning of the prefrontal cortex (PFC). Our understanding of how repeated MA impacts excitatory glutamatergic transmission within the PFC is limited, as is information about the relationship between PFC glutamate and addiction vulnerability/resiliency. In vivo microdialysis and immunoblotting studies characterized the effects of MA (ten injections of 2 mg/kg, i.p.) upon extracellular glutamate in C57BL/6J mice and upon glutamate receptor and transporter expression, within the medial PFC. Glutamatergic correlates of both genetic and idiopathic variance in MA preference/intake were determined through studies of high vs. low MA-drinking selectively bred mouse lines (MAHDR vs. MALDR, respectively) and inbred C57BL/6J mice exhibiting spontaneously divergent place-conditioning phenotypes. Repeated MA sensitized drug-induced glutamate release and lowered indices of N-methyl-d-aspartate receptor expression in C57BL/6J mice, but did not alter basal extracellular glutamate content or total protein expression of Homer proteins, or metabotropic or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors. Elevated basal glutamate, blunted MA-induced glutamate release and ERK activation, as well as reduced protein expression of mGlu2/3 and Homer2a/b were all correlated biochemical traits of selection for high vs. low MA drinking, and Homer2a/b levels were inversely correlated with the motivational valence of MA in C57BL/6J mice. These data provide novel evidence that repeated, low-dose MA is sufficient to perturb pre- and post-synaptic aspects of glutamate transmission within the medial PFC and that glutamate anomalies within this region may contribute to both genetic and idiopathic variance in MA addiction vulnerability/resiliency.


Assuntos
Sensibilização do Sistema Nervoso Central , Estimulantes do Sistema Nervoso Central/farmacologia , Ácido Glutâmico/metabolismo , Metanfetamina/farmacologia , Córtex Pré-Frontal/metabolismo , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Estimulantes do Sistema Nervoso Central/administração & dosagem , Condicionamento Clássico , Proteínas de Arcabouço Homer/genética , Proteínas de Arcabouço Homer/metabolismo , Masculino , Metanfetamina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Córtex Pré-Frontal/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Autoadministração , Transmissão Sináptica
8.
Addict Biol ; 21(3): 613-33, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25916683

RESUMO

An interaction exists between stress and alcohol in the etiology and chronicity of alcohol use disorders, yet a knowledge gap exists regarding the neurobiological underpinnings of this interaction. In this regard, we employed an 11-day unpredictable, chronic, mild stress (UCMS) procedure to examine for stress-alcohol cross-sensitization of motor activity as well as alcohol consumption/preference and intoxication. We also employed immunoblotting to relate the expression of glutamate receptor-related proteins within subregions of the nucleus accumbens (NAC) to the manifestation of behavioral cross-sensitization. UCMS mice exhibited a greater locomotor response to an acute injection of 2 g/kg alcohol than unstressed controls and this cross-sensitization extended to alcohol intake (0-20 percent), as well as to the intoxicating and sedative properties of 3 and 5 g/kg alcohol, respectively. Regardless of prior alcohol injection (2 g/kg), UCMS mice exhibited elevated NAC shell levels of mGlu1α, GluN2b and Homer2, as well as lower phospholipase Cß within this subregion. GluN2b levels were also lower within the NAC core of UCMS mice. The expression of stress-alcohol locomotor cross-sensitization was associated with lower mGlu1α within the NAC core and lower extracellular signal-regulated kinase activity within both NAC subregions. As Homer2 regulates alcohol sensitization, we assayed also for locomotor cross-sensitization in Homer2 wild-type (WT) and knock-out (KO) mice. WT mice exhibited a very robust cross-sensitization that was absent in KO animals. These results indicate that a history of mild stress renders an animal more sensitive to the psychomotor and rewarding properties of alcohol, which may depend on neuroplasticity within NAC glutamate transmission.


Assuntos
Alcoolismo/genética , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Proteínas de Arcabouço Homer/genética , Locomoção/genética , Núcleo Accumbens/metabolismo , Estresse Psicológico/genética , Alcoolismo/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Proteínas de Arcabouço Homer/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Plasticidade Neuronal , Fosfolipase C beta/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Estresse Psicológico/metabolismo
9.
J Neurosci ; 33(19): 8101-13, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23658151

RESUMO

Homer postsynaptic scaffolding proteins regulate forebrain glutamate transmission and thus, are likely molecular candidates mediating hypofrontality in addiction. Protracted withdrawal from cocaine experience increases the relative expression of Homer2 versus Homer1 isoforms within medial prefrontal cortex (mPFC). Thus, this study used virus-mediated gene transfer strategies to investigate the functional relevance of an imbalance in mPFC Homer1/2 expression as it relates to various measures of sensorimotor, cognitive, emotional and motivational processing, as well as accompanying alterations in extracellular glutamate in C57BL/6J mice. mPFC Homer2b overexpression elevated basal glutamate content and blunted cocaine-induced glutamate release within the mPFC, whereas Homer2b knockdown produced the opposite effects. Despite altering mPFC glutamate, Homer2b knockdown failed to influence cocaine-elicited conditioned place preferences, nor did it produce consistent effects on any other behavioral measures. In contrast, elevating the relative expression of Homer2b versus Homer1 within mPFC, by overexpressing Homer2b or knocking down Homer1c, shifted the dose-response function for cocaine-conditioned reward to the left, without affecting cocaine locomotion or sensitization. Intriguingly, both these transgenic manipulations produced glutamate anomalies within the nucleus accumbens (NAC) of cocaine-naive animals that are reminiscent of those observed in cocaine experienced animals, including reduced basal extracellular glutamate content, reduced Homer1/2 and glutamate receptor expression, and augmented cocaine-elicited glutamate release. Together, these data provide novel evidence in support of opposing roles for constitutively expressed Homer1 and Homer2 isoforms in regulating mPFC glutamate transmission in vivo and support the hypothesis that cocaine-elicited increases in the relative amount of mPFC Homer2 versus Homer1 signaling produces abnormalities in NAC glutamate transmission that enhance vulnerability to cocaine reward.


Assuntos
Proteínas de Transporte/metabolismo , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Estimulação Acústica , Animais , Cromatografia Líquida de Alta Pressão , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Comportamento Exploratório/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Transferência de Genes , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Arcabouço Homer , Inibição Psicológica , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microdiálise , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Reflexo de Sobressalto/efeitos dos fármacos , Sacarose/administração & dosagem , Edulcorantes/administração & dosagem , Natação
10.
Cell Rep ; 43(3): 113956, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489267

RESUMO

Drugs of abuse can persistently change the reward circuit in ways that contribute to relapse behavior, partly via mechanisms that regulate chromatin structure and function. Nuclear orphan receptor subfamily4 groupA member2 (NR4A2, also known as NURR1) is an important effector of histone deacetylase 3 (HDAC3)-dependent mechanisms in persistent memory processes and is highly expressed in the medial habenula (MHb), a region that regulates nicotine-associated behaviors. Here, expressing the Nr4a2 dominant negative (Nurr2c) in the MHb blocks reinstatement of cocaine seeking in mice. We use single-nucleus transcriptomics to characterize the molecular cascade following Nr4a2 manipulation, revealing changes in transcriptional networks related to addiction, neuroplasticity, and GABAergic and glutamatergic signaling. The network controlled by NR4A2 is characterized using a transcription factor regulatory network inference algorithm. These results identify the MHb as a pivotal regulator of relapse behavior and demonstrate the importance of NR4A2 as a key mechanism driving the MHb component of relapse.


Assuntos
Cocaína , Habenula , Camundongos , Animais , Habenula/fisiologia , Cocaína/farmacologia , Memória , Regulação da Expressão Gênica , Recidiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA