Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cachexia Sarcopenia Muscle ; 2(3): 181-188, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21966644

RESUMO

BACKGROUND: Cancer cachexia is the progressive loss of skeletal muscle protein that contributes significantly to cancer morbidity and mortality. Evidence of antioxidant attenuation and the presence of oxidised proteins in patients with cancer cachexia indicate a role for oxidative stress. The level of oxidative stress in tissues is determined by an imbalance between reactive oxygen species production and antioxidant activity. This study aimed to investigate the superoxide generating NADPH oxidase (NOX) enzyme and antioxidant enzyme systems in murine adenocarcinoma tumour-bearing cachectic mice. METHODS: Superoxide levels, mRNA levels of NOX enzyme subunits and the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidise (GPx) and catalase was measured in the skeletal muscle of mice with cancer and cancer cachexia. Protein expression levels of NOX enzyme subunits and antioxidant enzyme activity was also measured in the same muscle samples. RESULTS: Superoxide levels increased 1.4-fold in the muscle of mice with cancer cachexia, and this was associated with a decrease in mRNA of NOX enzyme subunits, NOX2, p40(phox) and p67(phox) along with the antioxidant enzymes SOD1, SOD2 and GPx. Cancer cachexia was also associated with a 1.3-fold decrease in SOD1 and 2.0-fold decrease in GPx enzyme activity. CONCLUSION: Despite increased superoxide levels in cachectic skeletal muscle, NOX enzyme subunits, NOX2, p40(phox) and p67(phox), were downregulated along with the expression and activity of the antioxidant enzymes. Therefore, the increased superoxide levels in cachectic skeletal muscle may be attributed to the reduction in the activity of endogenous antioxidant enzymes.

2.
J Physiol ; 538(Pt 3): 931-9, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11826176

RESUMO

We undertook this study to determine whether low intensity exercise (55 % (O2,max) would significantly alter the metabolic and ventilatory responses observed during 10 min of subsequent moderate intensity exercise (75 % (O2,max). By executing this work, we hoped to further our understanding of the mechanisms that limit mitochondrial ATP production at the onset of exercise. Seven healthy human subjects performed 10 min of moderate intensity exercise in the presence and absence of 10 min of low intensity exercise, which preceded the moderate intensity exercise by 3 min. Muscle biopsy samples were obtained from the vastus lateralis at pre-determined time points and oxygen consumption kinetics were determined at rest and during low and moderate intensity exercise. Following low intensity exercise and 3 min of passive recovery, muscle lactate and acetylcarnitine concentrations were elevated above basal levels, but (O2) had returned to the resting rate. When moderate intensity exercise was preceded by low intensity exercise, there was a significant sparing of phosphocreatine (PCr, approximately 25 %, P < 0.05) and reductions in glucose 6-phosphate (G-6-P, approximately 50 %, P < 0.05) and lactate (approximately 50 %, P < 0.05) accumulation during the first minute of moderate intensity exercise. No differences were observed after 10 min of moderate intensity exercise. The (O2) on-kinetic response over the first minute of moderate intensity exercise was accelerated when preceded by low intensity exercise. Collectively, our results suggest the lag in the oxidative ATP delivery at the onset of moderate intensity exercise can be overcome by prior low intensity exercise. Furthermore, our findings support the view that this lag is at least in part attributable to a limitation in acetyl group delivery/availability at the onset of exercise, rather than delayed oxygen supply.


Assuntos
Trifosfato de Adenosina/biossíntese , Exercício Físico/fisiologia , Pulmão/metabolismo , Mitocôndrias Musculares/metabolismo , Consumo de Oxigênio , Adulto , Humanos , Cinética , Masculino , Músculo Esquelético/metabolismo , Respiração , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA