Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(6): 2491-2499, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38294207

RESUMO

Monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) are important large biotherapeutics (∼150 kDa) and high structural complexity that require extensive sequence and structure characterization. Middle-down mass spectrometry (MD-MS) is an emerging technique that sequences and maps subunits larger than those released by trypsinolysis. It avoids potentially introducing artifactual modifications that may occur in bottom-up MS while achieving higher sequence coverage compared to top-down MS. However, returning complete sequence information by MD-MS is still challenging. Here, we show that assigning internal fragments in direct infusion MD-MS of a mAb and an ADC substantially improves their structural characterization. For MD-MS of the reduced NIST mAb, including internal fragments recovers nearly 100% of the sequence by accessing the middle sequence region that is inaccessible by terminal fragments. The identification of important glycosylations can also be improved after the inclusion of internal fragments. For the reduced lysine-linked IgG1-DM1 ADC, we show that considering internal fragments increases the DM1 conjugation sites coverage to 80%, comparable to the reported 83% coverage achieved by peptide mapping on the same ADC (Luo et al. Anal. Chem. 2016, 88, 695-702). This study expands our work on the application of internal fragment assignments in top-down MS of mAbs and ADCs and can be extended to other heterogeneous therapeutic molecules such as multispecifics and fusion proteins for more widespread applications.


Assuntos
Anticorpos Monoclonais , Imunoconjugados , Anticorpos Monoclonais/química , Imunoconjugados/química , Espectrometria de Massas/métodos , Mapeamento de Peptídeos , Lisina/química
2.
Anal Chem ; 95(30): 11510-11517, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37458293

RESUMO

Spontaneous conversion of aspartic acid (Asp) to isoaspartic acid (isoAsp) is a ubiquitous modification that influences the structure and function of proteins. This modification of Asp impacts the stability of biotherapeutics and has been linked to the development of neurodegenerative diseases. We explored the use of 193 nm ultraviolet photodissociation (UVPD) to distinguish Asp and isoAsp in the protonated and deprotonated peptides. The differences in the relative abundances of several fragment ions uniquely generated by UVPD were used to differentiate isomeric peptide standards containing Asp or isoAsp. These fragment ions result from the cleavage of bonds N-terminal to Asp/isoAsp residues in addition to the side-chain losses from Asp/isoAsp or the losses of COOH, CO2, CO, or H2O from y-ions. Fragmentation of Asp-containing tryptic peptides using UVPD resulted in more enhanced w/w + 1/y - 1/x ions, while isoAsp-containing peptides yielded more enhanced y - 18/y - 45/y - 46 ions. UVPD was also used to identify an isomerized peptide from a tryptic digest of a monoclonal antibody. Moreover, UVPD of a protonated nontryptic peptide resulted in more enhanced y ions N- and C-terminal to isoAsp and differences in b/y ion ratios that were used to identify the isoAsp peptide.


Assuntos
Ácido Isoaspártico , Peptídeos , Ácido Isoaspártico/análise , Ácido Isoaspártico/química , Sequência de Aminoácidos , Espectrometria de Massas/métodos , Peptídeos/química , Ácido Aspártico/química , Íons , Raios Ultravioleta
3.
Anal Chem ; 95(24): 9347-9356, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37278738

RESUMO

Monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) are two of the most important therapeutic drug classes that require extensive characterization, whereas their large size and structural complexity make them challenging to characterize and demand the use of advanced analytical methods. Top-down mass spectrometry (TD-MS) is an emerging technique that minimizes sample preparation and preserves endogenous post-translational modifications (PTMs); however, TD-MS of large proteins suffers from low fragmentation efficiency, limiting the sequence and structure information that can be obtained. Here, we show that including the assignment of internal fragments in native TD-MS of an intact mAb and an ADC can improve their molecular characterization. For the NIST mAb, internal fragments can access the sequence region constrained by disulfide bonds to increase the TD-MS sequence coverage to over 75%. Important PTM information, including intrachain disulfide connectivity and N-glycosylation sites, can be revealed after including internal fragments. For a heterogeneous lysine-linked ADC, we show that assigning internal fragments improves the identification of drug conjugation sites to achieve a coverage of 58% of all putative conjugation sites. This proof-of-principle study demonstrates the potential value of including internal fragments in native TD-MS of intact mAbs and ADCs, and this analytical strategy can be extended to bottom-up and middle-down MS approaches to achieve even more comprehensive characterization of important therapeutic molecules.


Assuntos
Espectrometria de Massas , Anticorpos Monoclonais/química , Humanos , Glicosilação , Espectrometria de Massas/métodos , Dissulfetos/química , Lisina/química
4.
Anal Chem ; 94(16): 6191-6199, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35421308

RESUMO

Isomeric peptide analyses are an analytical challenge of great importance to therapeutic monoclonal antibody and other biotherapeutic product development workflows. Aspartic acid (Asp, D) to isoaspartic acid (isoAsp, isoD) isomerization is a critical quality attribute (CQA) that requires careful control, monitoring, and quantitation during the drug discovery and production processes. While the formation of isoAsp has been implicated in a variety of disease states such as autoimmune diseases and several types of cancer, it is also understood that the formation of isoAsp results in a structural change impacting efficacy, potency, and immunogenic properties, all of which are undesirable. Currently, lengthy ultrahigh-performance liquid chromatography (UPLC) separations are coupled with MS for CQA analyses; however, these measurements often take over an hour and drastically limit analysis throughput. In this manuscript, drift tube ion mobility spectrometry-mass spectrometry (DTIMS-MS) and both a standard and high-resolution demultiplexing approach were utilized to study eight isomeric Asp and isoAsp peptide pairs. While the limited resolving power associated with the standard DTIMS analysis only separated three of the eight pairs, the application of HRdm distinguished seven of the eight and was only unable to separate DL and isoDL. The rapid high-throughput HRdm DTIMS-MS method was also interfaced with both flow injection and an automated solid phase extraction system to present the first application of HRdm for isoAsp and Asp assessment and demonstrate screening capabilities for isomeric peptides in complex samples, resulting in a workflow highly suitable for biopharmaceutical research needs.


Assuntos
Espectrometria de Mobilidade Iônica , Ácido Isoaspártico , Cromatografia Líquida , Espectrometria de Mobilidade Iônica/métodos , Ácido Isoaspártico/análise , Espectrometria de Massas/métodos , Peptídeos
5.
Nat Methods ; 16(7): 587-594, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31249407

RESUMO

One gene can give rise to many functionally distinct proteoforms, each of which has a characteristic molecular mass. Top-down mass spectrometry enables the analysis of intact proteins and proteoforms. Here members of the Consortium for Top-Down Proteomics provide a decision tree that guides researchers to robust protocols for mass analysis of intact proteins (antibodies, membrane proteins and others) from mixtures of varying complexity. We also present cross-platform analytical benchmarks using a protein standard sample, to allow users to gauge their proficiency.


Assuntos
Benchmarking , Espectrometria de Massas/métodos , Proteínas/química , Desnaturação Proteica , Processamento de Proteína Pós-Traducional , Proteômica
6.
Mass Spectrom Rev ; 38(3): 291-320, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30707468

RESUMO

Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

7.
Anal Chem ; 91(15): 9472-9480, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31194911

RESUMO

Electrospray ionization mass spectrometry (ESI-MS) is a ubiquitously used analytical method applied across multiple departments in biopharma, ranging from early research discovery to process development. Accurate, efficient, and consistent protein MS spectral deconvolution across multiple instrument and detector platforms (time-of-flight, Orbitrap, Fourier-transform ion cyclotron resonance) is essential. When proteins are ionized during the ESI process, a distribution of consecutive multiply charged ions are observed on the m/z scale, either positive [M + nH]n+ or negative [M - nH]n- depending on the ionization polarity. The manual calculation of the neutral molecular weight (MW) of single proteins measured by ESI-MS is simple; however, algorithmic deconvolution is required for more complex protein mixtures to derive accurate MWs. Multiple deconvolution algorithms have evolved over the past two decades, all of which have their advantages and disadvantages, in terms of speed, user-input parameters (or ideally lack thereof), and whether they perform optimally on proteins analyzed under denatured or native-MS and solution conditions. Herein, we describe the utility of a parsimonious deconvolution algorithm (explaining the observed spectra with a minimum number of masses) to process a wide range of highly diverse biopharma relevant and research grade proteins and complexes (PEG-GCSF; an IgG1k; IgG1- and IgG2-biotin covalent conjugates; the membrane protein complex AqpZ; a highly polydisperse empty MSP1D1 nanodisc and the tetradecameric chaperone protein complex GroEL) analyzed under native-MS, denaturing LC-MS, and positive and negative modes of ionization, using multiple instruments and therefore multiple data formats. The implementation of a comb filter and peak sharpening option is also demonstrated to be highly effective for deconvolution of highly polydisperse and enhanced separation of a low level lysine glycation post-translational modification (+162.1 Da), partially processed heavy chain lysine residues (+128.1 Da), and loss of N-acetylglucosamine (GlcNAc; -203.1 Da).


Assuntos
Algoritmos , Biofarmácia/métodos , Peso Molecular , Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Anticorpos Monoclonais/química , Glicosilação , Imunoconjugados/química , Lisina/química , Proteínas de Membrana/química
8.
Anal Chem ; 90(22): 13616-13623, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30335969

RESUMO

Therapeutic target characterization involves many components, including accurate molecular weight (MW) determination. Knowledge of the accurate MW allows one to detect the presence of post-translational modifications, proteolytic cleavages, and importantly, if the correct construct has been generated and purified. Denaturing liquid chromatography-mass spectrometry (LC-MS) can be an attractive method for obtaining this information. However, membrane protein LC-MS methodology has remained relatively under-explored and under-incorporated in comparison to methods for soluble proteins. Here, systematic investigation of multiple gradients and column chemistries has led to the development of a 5 min denaturing LC-MS method for acquiring membrane protein accurate MW measurements. Conditions were interrogated with membrane proteins, such as GPCRs and ion channels, as well as bispecific antibody constructs of variable sizes with the aim to provide the community with rapid LC-MS methods necessary to obtain chromatographic and accurate MW measurements in a medium- to high-throughput manner. The 5 min method detailed has successfully produced MW measurements for hydrophobic proteins with a wide MW range (17.5 to 105.3 kDa) and provided evidence that some constructs indeed contain unexpected modifications or sequence clipping. This rapid LC-MS method is also capable of baseline separating formylated and nonformylated aquaporinZ membrane protein.


Assuntos
Cromatografia Líquida/métodos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas/métodos , Proteínas de Membrana/química , Peso Molecular
9.
Anal Chem ; 90(1): 745-751, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29193956

RESUMO

Antibody-drug conjugates (ADCs) are an important class of therapeutic molecule currently being used to treat HER2-positive metastatic breast cancer, relapsed or refractory Hodgkin lymphoma, systemic anaplastic large cell lymphoma, relapsed or refractory B-cell precursor acute lymphoblastic leukemia, and acute myeloid leukemia. An ADC typically consists of a small molecule or peptide-based cytotoxic moiety covalently linked, via lysine or cysteine residues, to a monoclonal antibody (mAb) scaffold. Mass spectrometric (MS) characterization of these molecules affords highly accurate molecular weight (MW) and drug-to-antibody ratio (DAR) determination and is typically performed using orthogonal acceleration time-of-flight (oa-ToF) analyzers and more recently, Orbitrap instruments. Herein we describe for the first time the use of a 15 T solariX Fourier transform ion cyclotron mass spectrometer to characterize an IgG1 mAb molecule conjugated with biotin via native lysine and cysteine residues, under native-MS and solution conditions. The cysteine-biotin conjugates remained fully intact, demonstrating the ability of the FT-ICR to maintain the noncovalent interactions and efficiently transmit labile protein complexes. Native-MS was acquired and is displayed in magnitude mode using a symmetric Hann apodization function. Baseline separation is achieved on all covalent biotin additions, for each charge state, for both the lysine- and cysteine-biotin conjugates. Average DAR values obtained by native-MS for the lysine conjugate are compared to those derived by denaturing reversed phase liquid chromatography using an oa-ToF MS system (1.56 ± 0.02 versus 2.24 ± 0.02 for the 5 equivalent and 3.99 ± 0.09 versus 4.43 ± 0.01 for the 10 equivalent, respectively). Increased DAR value accuracy can be obtained for the higher biotin-load when using standard ESI conditions as opposed to nanoESI native-MS conditions.


Assuntos
Anticorpos Monoclonais/análise , Biotina/análise , Imunoconjugados/análise , Imunoglobulina G/análise , Espectrometria de Massas/métodos , Anticorpos Monoclonais/química , Biotina/química , Cisteína/química , Imunoconjugados/química , Imunoglobulina G/química , Lisina/química
10.
Anal Chem ; 88(24): 12427-12436, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28193065

RESUMO

Over the past two decades, orthogonal acceleration time-of-flight has been the de facto analyzer for solution and membrane-soluble protein native mass spectrometry (MS) studies; this however is gradually changing. Three MS instruments are compared, the Q-ToF, Orbitrap, and the FT-ICR, to analyze, under native instrument and buffer conditions, the seven-transmembrane helical protein bacteriorhodopsin-octylglucoside micelle and the empty nanodisc (MSP1D1-Nd) using both MS and tandem-MS modes of operation. Bacteriorhodopsin can be released from the octylglucoside-micelle efficiently on all three instruments (MS-mode), producing a narrow charge state distribution (z = 8+ to 10+) by either increasing the source lens or collision cell (or HCD) voltages. A lower center-of-mass collision energy (0.20-0.41 eV) is required for optimal bacteriorhodopsin liberation on the FT-ICR, in comparison to the Q-ToF and Orbitrap instruments (0.29-2.47 eV). The empty MSP1D1-Nd can be measured with relative ease on all three instruments, resulting in a highly complex spectrum of overlapping, polydisperse charge states. There is a measurable difference in MSP1D1-Nd charge state distribution (z = 15+ to 26+), average molecular weight (141.7 to 169.6 kDa), and phospholipid incorporation number (143 to 184) under low activation conditions. Utilizing tandem-MS, bacteriorhodopsin can be effectively liberated from the octylglucoside-micelle by collisional (Q-ToF and FT-ICR) or continuous IRMPD activation (FT-ICR). MSP1D1-Nd spectral complexity can also be significantly reduced by tandem-MS (Q-ToF and FT-ICR) followed by mild collisional or continuous IRMPD activation, resulting in a spectrum in which the charge state and phospholipid incorporation levels can easily be determined.


Assuntos
Bacteriorodopsinas/química , Glucosídeos/química , Espectrometria de Massas/métodos , Micelas , Ciclotrons , Análise de Fourier , Halobacterium salinarum/química , Modelos Moleculares , Nanoestruturas/química , Conformação Proteica , Membrana Purpúrea/química
11.
Anal Chem ; 88(19): 9524-9531, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27532319

RESUMO

Saposin A (SapA) lipoprotein discs, also known as picodiscs (PDs), represent an attractive method to solubilize glycolipids for protein interaction studies in aqueous solution. Recent electrospray ionization mass spectrometry (ESI-MS) data suggest that the size and composition of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-containing PDs at neutral pH differs from those of N,N-dimethyldodecylamine N-oxide determined by X-ray crystallography. Using high-resolution ESI-MS, multiangle laser light scattering (MALLS), and molecular dynamics (MD) simulations, the composition, heterogeneity, and structure of POPC-PDs in aqueous ammonium acetate solutions at pH 4.8 and 6.8 were investigated. The ESI-MS and MALLS data revealed that POPC-PDs consist predominantly of (SapA dimer + iPOPC) complexes, with i = 23-29, and have an average molecular weight (MW) of 38.2 ± 3.3 kDa at pH 4.8. In contrast, in freshly prepared solutions at pH 6.8, POPC-PDs are composed predominantly of (SapA tetramer + iPOPC) complexes, with i = 37-60, with an average MW of 68.0 ± 2.7 kDa. However, the (SapA tetramer + iPOPC) complexes are unstable at neutral pH and convert, over a period of hours, to (SapA trimer + iPOPC) complexes, with i = 29-36, with an average MW of 51.1 ± 2.9 kDa. The results of molecular modeling suggest spheroidal structures for the (SapA dimer + iPOPC), (SapA trimer + iPOPC), and (SapA tetramer + iPOPC) complexes in solution. Comparison of measured collision cross sections (Ω) with values calculated for gaseous (SapA dimer + 26POPC)8+, (SapA trimer + 33POPC)12+, and (SapA tetramer + 42POPC)16+ ions produced from modeling suggests that the solution structures are largely preserved in the gas phase, although the lipids do not maintain regular bilayer orientations.


Assuntos
Lipoproteínas/química , Tamanho da Partícula , Saposinas/química , Acetatos/química , Animais , Galinhas , Gases/química , Cavalos , Humanos , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Peso Molecular , Fosfatidilcolinas/química , Espectrometria de Massas por Ionização por Electrospray
12.
Anal Chem ; 87(6): 3300-7, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25664640

RESUMO

The chirality of substituents on an amino acid can significantly change its mode of binding to a metal ion, as shown here experimentally by traveling wave ion mobility spectrometry-mass spectrometry (TWIMS-MS) of different proline isomeric molecules complexed with alkali metal ions. Baseline separation of the cis- and trans- forms of both hydroxyproline and fluoroproline was achieved using TWIMS-MS via metal ion cationization (Li(+), Na(+), K(+), and Cs(+)). Density functional theory calculations indicate that differentiation of these diastereomers is a result of the stabilization of differing metal-complexed forms adopted by the diastereomers when cationized by an alkali metal cation, [M + X](+) where X = Li, Na, K, and Cs, versus the topologically similar structures of the protonated molecules, [M + H](+). Metal-cationized trans-proline variants exist in a linear salt-bridge form where the metal ion interacts with a deprotonated carboxylic acid and the proton is displaced onto the nitrogen atom of the pyrrolidine ring. In contrast, metal-cationized cis-proline variants adopt a compact structure where the carbonyl of the carboxylic acid, nitrogen atom, and if available, the hydroxyl and fluorine substituent solvate the metal ion. Experimentally, it was observed that the resolution between alkali metal-cationized cis- and trans-proline variants decreases as the size of the metal ion increases. Density functional theory demonstrates that this is due to the decreasing stability of the compact charge-solvated cis-proline structure with increased metal ion radius, likely a result of steric hindrance and/or weaker binding to the larger metal ion. Furthermore, the unique structures adopted by the alkali metal-cationized cis- and trans-proline variants results in these molecules having significantly different quantum mechanically calculated dipole moments, a factor that can be further exploited to improve the diastereomeric resolution when utilizing a drift gas with a higher polarizability constant.


Assuntos
Hidroxiprolina/química , Hidroxiprolina/isolamento & purificação , Espectrometria de Massas/métodos , Metais Alcalinos/química , Prolina/análogos & derivados , Modelos Moleculares , Conformação Molecular , Nitrogênio/química , Prolina/química , Prolina/isolamento & purificação , Prótons , Solventes/química , Estereoisomerismo
13.
J Biol Chem ; 288(51): 36272-84, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24196967

RESUMO

Peripherin and its homologue ROM1 are retina-specific members of the tetraspanin family of integral membrane proteins required for morphogenesis and maintenance of photoreceptor outer segments, regions that collect light stimuli. Over 100 pathogenic mutations in peripherin cause inherited rod- and cone-related dystrophies in humans. Peripherin and ROM1 interact in vivo and are predicted to form a core heterotetrameric complex capable of creating higher order oligomers. However, structural analysis of tetraspanin proteins has been hampered by their resistance to crystallization. Here we present a simplified methodology for high yield purification of peripherin-ROM1 from bovine retinas that permitted its biochemical and biophysical characterization. Using size exclusion chromatography and blue native gel electrophoresis, we confirmed that the core native peripherin-ROM1 complex exists as a tetramer. Peripherin, but not ROM1, is glycosylated and we examined the glycosylation site and glycan composition of ROM1 by liquid chromatographic tandem mass spectrometry. Mass spectrometry was used to analyze the native complex in detergent micelles, demonstrating its tetrameric state. Our electron microscopy-generated structure solved to 18 Å displayed the tetramer as an elongated structure with an apparent 2-fold symmetry. Finally, we demonstrated that peripherin-ROM1 tetramers induce membrane curvature when reconstituted in lipid vesicles. These results provide critical insights into this key retinal component with a poorly defined function.


Assuntos
Periferinas/química , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Tetraspaninas/química , Sequência de Aminoácidos , Animais , Bovinos , Glicosilação , Lipossomos/química , Dados de Sequência Molecular , Periferinas/metabolismo , Polissacarídeos/química , Multimerização Proteica , Segmento Externo das Células Fotorreceptoras da Retina/química , Tetraspaninas/metabolismo
14.
J Am Soc Mass Spectrom ; 34(10): 2413-2431, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37643331

RESUMO

Membrane proteins and associated complexes currently comprise the majority of therapeutic targets and remain among the most challenging classes of proteins for analytical characterization. Through long-term strategic collaborations forged between industrial and academic research groups, there has been tremendous progress in advancing membrane protein mass spectrometry (MS) analytical methods and their concomitant application to Amgen therapeutic project progression. Herein, I will describe a detailed and personal account of how electrospray ionization (ESI) native mass spectrometry (nMS), ion mobility-MS (IM-MS), reversed phase liquid chromatographic mass spectrometry (RPLC-MS), high-throughput solid phase extraction mass spectrometry, and matrix-assisted laser desorption ionization mass spectrometry methods were developed, optimized, and validated within Amgen Research, and importantly, how these analytical methods were applied for membrane and hydrophobic protein analyses and ultimately therapeutic project support and progression. Additionally, I will discuss all the highly important and productive collaborative efforts, both internal Amgen and external academic, which were key in generating the samples, methods, and associated data described herein. I will also describe some early and previously unpublished nano-ESI (nESI) native-MS data from Amgen Research and the highly productive University of California Los Angeles (UCLA) collaboration. I will also present previously unpublished examples of real-life Amgen biotherapeutic membrane protein projects that were supported by all the MS (and IM) analytical techniques described herein. I will start by describing the initial nESI nMS experiments performed at Amgen in 2011 on empty nanodisc molecules, using a quadrupole time-of-flight MS, and how these experiments progressed on to the 15 Tesla Fourier transform ion cyclotron resonance MS at UCLA. Then described are monomeric and multimeric membrane protein data acquired in both nESI nMS and tandem-MS modes, using multiple methods of ion activation, resulting in dramatic spectral simplification. Also described is how we investigated the far less established and less published subject, that is denaturing RPLC-MS analysis of membrane proteins, and how we developed a highly robust and reproducible RPLC-MS method capable of effective separation of membrane proteins differing in only the presence or absence of an N-terminal post translational modification. Also described is the evolution of the aforementioned RPLC-MS method into a high-throughput solid phase extraction MS method. Finally, I will give my opinion on key developments and how the area of nMS of membrane proteins needs to evolve to a state where it can be applied within the biopharmaceutical research environment for routine therapeutic project support.


Assuntos
Proteínas de Membrana , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem
15.
J Med Chem ; 66(23): 16120-16140, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37988652

RESUMO

B3GNT2 is responsible for elongation of cell surface long-chain polylactosamine, which influences the regulation of the immune response, making it an attractive target for immunomodulation. In the development of amide containing B3GNT2 inhibitors guided by structure-based drug design, imidazolones were found to successfully serve as amide bioisosteres. This novel imidazolone isosteric strategy alleviated torsional strain of the amide bond on binding to B3GNT2 and improved potency, isoform selectivity, as well as certain physicochemical and pharmacokinetic properties. Herein, we present the synthesis, SAR, X-ray cocrystal structures, and in vivo PK properties of imidazol-4-ones in the context of B3GNT2 inhibition.


Assuntos
Amidas , N-Acetilglucosaminiltransferases , Amidas/farmacologia , Amidas/química , N-Acetilglucosaminiltransferases/metabolismo , Desenho de Fármacos , Relação Estrutura-Atividade
16.
MAbs ; 15(1): 2256745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37698932

RESUMO

Biologic drug discovery pipelines are designed to deliver protein therapeutics that have exquisite functional potency and selectivity while also manifesting biophysical characteristics suitable for manufacturing, storage, and convenient administration to patients. The ability to use computational methods to predict biophysical properties from protein sequence, potentially in combination with high throughput assays, could decrease timelines and increase the success rates for therapeutic developability engineering by eliminating lengthy and expensive cycles of recombinant protein production and testing. To support development of high-quality predictive models for antibody developability, we designed a sequence-diverse panel of 83 effector functionless IgG1 antibodies displaying a range of biophysical properties, produced and formulated each protein under standard platform conditions, and collected a comprehensive package of analytical data, including in vitro assays and in vivo mouse pharmacokinetics. We used this robust training data set to build machine learning classifier models that can predict complex protein behavior from these data and features derived from predicted and/or experimental structures. Our models predict with 87% accuracy whether viscosity at 150 mg/mL is above or below a threshold of 15 centipoise (cP) and with 75% accuracy whether the area under the plasma drug concentration-time curve (AUC0-672 h) in normal mouse is above or below a threshold of 3.9 × 106 h x ng/mL.


Assuntos
Anticorpos Monoclonais , Descoberta de Drogas , Animais , Camundongos , Anticorpos Monoclonais/química , Simulação por Computador , Proteínas Recombinantes , Viscosidade
17.
Anal Chem ; 84(16): 7124-30, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22845859

RESUMO

One difficulty in using ion mobility (IM) mass spectrometry (MS) to improve the specificity of peptide ion assignments is that IM separations are performed using a range of pressures, gas compositions, temperatures, and modes of separation, which makes it challenging to rapidly extract accurate shape parameters. We report collision cross section values (Ω) in both He and N(2) gases for 113 peptide ions determined directly from drift times measured in a low-pressure, ambient temperature drift cell with radio-frequency (rf) ion confinement. These peptide ions have masses ranging from 231 to 2969 Da, Ω(He) of 89-616 Å(2), and Ω(N(2)) of 151-801 Å(2); thus, they are ideal for calibrating results from proteomics experiments. These results were used to quantify the errors associated with traveling-wave Ω measurements of peptide ions and the errors concomitant with using drift times measured in N(2) gas to estimate Ω(He). More broadly, these results enable the rapid and accurate determination of calibrated Ω for peptide ions, which could be used as an additional parameter to increase the specificity of assignments in proteomics experiments.


Assuntos
Hélio/química , Espectrometria de Massas/métodos , Nitrogênio/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Calibragem , Bovinos , Dados de Sequência Molecular , Pressão , Proteômica , Temperatura
18.
Anal Chem ; 84(20): 8524-31, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22974196

RESUMO

There has been a significant increase in the use of ion mobility mass spectrometry (IM-MS) to investigate conformations of proteins and protein complexes following electrospray ionization. Investigations which employ traveling wave ion mobility mass spectrometry (TW IM-MS) instrumentation rely on the use of calibrants to convert the arrival times of ions to collision cross sections (CCS) providing "hard numbers" of use to structural biology. It is common to use nitrogen as the buffer gas in TW IM-MS instruments and to calibrate by extrapolating from CCS measured in helium via drift tube (DT) IM-MS. In this work, both DT and TW IM-MS instruments are used to investigate the effects of different drift gases (helium, neon, nitrogen, and argon) on the transport of multiply charged ions of the protein myoglobin, frequently used as a standard in TW IM-MS studies. Irrespective of the drift gas used, recorded mass spectra are found to be highly similar. In contrast, the recorded arrival time distributions and the derived CCS differ greatly. At low charge states (7 ≤ z ≤ 11) where the protein is compact, the CCS scale with the polarizability of the gas; this is also the case for higher charge states (12 ≤ z ≤ 22) where the protein is more unfolded for the heavy gases (neon, argon, and nitrogen) but not the case for helium. This is here interpreted as a different conformational landscape being sampled by the lighter gas and potentially attributable to increased field heating by helium. Under nanoelectrospray ionization (nESI) conditions, where myoglobin is sprayed from an aqueous solution buffered to pH 6.8 with 20 mM ammonium acetate, in the DT IM-MS instrument, each buffer gas can yield a different arrival time distribution (ATD) for any given charge state.


Assuntos
Gases/análise , Íons/análise , Mioglobina/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Cavalos , Modelos Moleculares , Conformação Proteica
19.
Biochem Soc Trans ; 40(5): 1021-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22988858

RESUMO

The link between structure and function of a given protein is a principal tenet of biology. The established approach to understand the function of a protein is to 'solve' its structure and subsequently investigate interactions between the protein and its binding partners. However, structure determination via crystallography or NMR is challenging for proteins where localized regions or even their entire structure fail to fold into a three-dimensional form. These so called IDPs (intrinsically disordered proteins) or intrinsically disordered regions constitute up to 40% of all expressed proteins, and a much higher percentage in proteins involved in the proliferation of cancer. For these proteins, there is a need to develop new methods for structural characterization which exploit their biophysical properties. IM (ion mobility)-MS is uniquely able to examine both absolute conformation(s), populations of conformation and also conformational change, and is therefore highly applicable to the study of IDPs. The present article details the technique of IM-MS and illustrates its use in assessing the relative disorder of the wild-type p53 DNA-core-binding domain of cellular tumour antigen p53. The IM data were acquired on a Waters Synapt HDMS instrument following nESI (nanoelectrospray ionization) from 'native' and low-pH solution conditions.


Assuntos
Espectrometria de Massas , Proteína Supressora de Tumor p53/química , Concentração de Íons de Hidrogênio , Conformação Proteica , Proteína Supressora de Tumor p53/metabolismo
20.
J Am Soc Mass Spectrom ; 33(11): 2191-2198, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36206542

RESUMO

Reversed-phase liquid chromatographic mass spectrometry (rpLC-MS) is a universal, platformed, and essential analytical technique within pharmaceutical and biopharmaceutical research. Typical rpLC method gradient times can range from 5 to 20 min. As monoclonal antibody (mAb) therapies continue to evolve and bispecific antibodies (BsAbs) become more established, research stage engineering panels will clearly evolve in size. Therefore, high-throughput (HT) MS and automated deconvolution methods are key for success. Additionally, newer therapeutics such as bispecific T-cell engagers and nucleic acid-based modalities will also require MS characterization. Herein, we present a modality and target agnostic HT solid-phase extraction (SPE) MS method that affords the analysis of a 96-well plate in 41.4 min, compared to the traditional rpLC-MS method that would typically take 14.4 h. The described method can accurately determine the molecular weights for monodispersed and highly polydispersed biotherapeutic species and membrane proteins; determine levels of glycosylation, glycation, and formylation; detect levels of chain mispairing; and determine accurate drug-to-antibody ratio values.


Assuntos
Cromatografia de Fase Reversa , Extração em Fase Sólida , Espectrometria de Massas/métodos , Cromatografia de Fase Reversa/métodos , Peso Molecular , Anticorpos Monoclonais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA