RESUMO
Haematopoietic stem cell (HSC) transplantation (HSCT) is the only curative treatment for a broad range of haematological malignancies, but the standard of care relies on untargeted chemotherapies and limited possibilities to treat malignant cells after HSCT without affecting the transplanted healthy cells1. Antigen-specific cell-depleting therapies hold the promise of much more targeted elimination of diseased cells, as witnessed in the past decade by the revolution of clinical practice for B cell malignancies2. However, target selection is complex and limited to antigens expressed on subsets of haematopoietic cells, resulting in a fragmented therapy landscape with high development costs2-5. Here we demonstrate that an antibody-drug conjugate (ADC) targeting the pan-haematopoietic marker CD45 enables the antigen-specific depletion of the entire haematopoietic system, including HSCs. Pairing this ADC with the transplantation of human HSCs engineered to be shielded from the CD45-targeting ADC enables the selective eradication of leukaemic cells with preserved haematopoiesis. The combination of CD45-targeting ADCs and engineered HSCs creates an almost universal strategy to replace a diseased haematopoietic system, irrespective of disease aetiology or originating cell type. We propose that this approach could have broad implications beyond haematological malignancies.
Assuntos
Neoplasias Hematológicas , Hematopoese , Imunoconjugados , Antígenos Comuns de Leucócito , Animais , Feminino , Humanos , Masculino , Camundongos , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/imunologia , Hematopoese/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Antígenos Comuns de Leucócito/imunologia , Antígenos Comuns de Leucócito/metabolismo , Linhagem Celular Tumoral , Especificidade de AnticorposRESUMO
High-throughput engineering has the potential to revolutionize the customization of biosynthetic assembly lines for the sustainable production of pharmaceutically relevant natural product analogs. Here, we show that the substrate specificity of gatekeeper adenylation domains of nonribosomal peptide synthetases can be switched from an α-amino acid to an α-hydroxy acid in a single round of combinatorial mutagenesis and selection using yeast cell surface display. In addition to shedding light on how such proteins discriminate between amino and hydroxy groups, the remodeled domains function in a pathway context to produce α-hydroxy acid-containing linear peptides and cyclic depsipeptides with high efficiency. Site-specific replacement of backbone amines with oxygens by an engineered synthetase provides the means to probe and tune the activities of diverse peptide metabolites in a simple and predictable fashion.
Assuntos
Produtos Biológicos , Depsipeptídeos , Aminas , Aminoácidos/metabolismo , Hidroxiácidos , Peptídeo Sintases/metabolismo , Especificidade por SubstratoRESUMO
Nonribosomal peptides constitute an important class of natural products that display a wide range of bioactivities. They are biosynthesized by large assembly lines called nonribosomal peptide synthetases (NRPSs). Engineering NRPS modules represents an attractive strategy for generating customized synthetases for the production of peptide variants with improved properties. Here, we explored the yeast display of NRPS elongation and termination modules as a high-throughput screening platform for assaying adenylation domain activity and altering substrate specificity. Depending on the module, display of A-T bidomains or C-A-T tridomains, which also include an upstream condensation domain, proved to be most effective. Reprograming a tyrocidine synthetase elongation module to accept 4-propargyloxy-phenylalanine, a noncanonical amino acid that is not activated by the native protein, illustrates the utility of this approach for altering NRPS specificity at internal sites.
Assuntos
Peptídeo Sintases , Leveduras , Peptídeo Sintases/metabolismo , Fenilalanina , Peptídeos/químicaRESUMO
Targeted eradication of transformed or otherwise dysregulated cells using monoclonal antibodies (mAb), antibody-drug conjugates (ADC), T cell engagers (TCE), or chimeric antigen receptor (CAR) cells is very effective for hematologic diseases. Unlike the breakthrough progress achieved for B cell malignancies, there is a pressing need to find suitable antigens for myeloid malignancies. CD123, the interleukin-3 (IL-3) receptor alpha-chain, is highly expressed in various hematological malignancies, including acute myeloid leukemia (AML). However, shared CD123 expression on healthy hematopoietic stem and progenitor cells (HSPCs) bears the risk for myelotoxicity. We demonstrate that epitope-engineered HSPCs were shielded from CD123-targeted immunotherapy but remained functional, while CD123-deficient HSPCs displayed a competitive disadvantage. Transplantation of genome-edited HSPCs could enable tumor-selective targeted immunotherapy while rebuilding a fully functional hematopoietic system. We envision that this approach is broadly applicable to other targets and cells, could render hitherto undruggable targets accessible to immunotherapy, and will allow continued posttransplant therapy, for instance, to treat minimal residual disease (MRD).
Assuntos
Subunidade alfa de Receptor de Interleucina-3 , Leucemia Mieloide Aguda , Humanos , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Epitopos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Imunoterapia , Células-Tronco Hematopoéticas/metabolismo , Imunoterapia AdotivaRESUMO
New enzyme catalysts are usually engineered by repurposing the active sites of natural proteins. Here we show that design and directed evolution can be used to transform a non-natural, functionally naive zinc-binding protein into a highly active catalyst for an abiological hetero-Diels-Alder reaction. The artificial metalloenzyme achieves >104 turnovers per active site, exerts absolute control over reaction pathway and product stereochemistry, and displays a catalytic proficiency (1/KTS = 2.9 × 1010 M-1) that exceeds all previously characterized Diels-Alderases. These properties capitalize on effective Lewis acid catalysis, a chemical strategy for accelerating Diels-Alder reactions common in the laboratory but so far unknown in nature. Extension of this approach to other metal ions and other de novo scaffolds may propel the design field in exciting new directions.