Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cells Tissues Organs ; 204(3-4): 150-163, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28803246

RESUMO

The treatment and regeneration of bone defects caused by traumatism or diseases have not been completely addressed by current therapies. Lately, advanced tools and technologies have been successfully developed for bone tissue regeneration. Functional scaffolding materials such as biopolymers and bioresorbable fillers have gained particular attention, owing to their ability to promote cell adhesion, proliferation, and extracellular matrix production, which promote new bone growth. Here, we present novel biofunctional scaffolds for bone regeneration composed of silk fibroin (SF) and ß-tricalcium phosphate (ß-TCP) and incorporating Sr, Zn, and Mn, which were successfully developed using salt-leaching followed by a freeze-drying technique. The scaffolds presented a suitable pore size, porosity, and high interconnectivity, adequate for promoting cell attachment and proliferation. The degradation behavior and compressive mechanical strengths showed that SF/ionic-doped TCP scaffolds exhibit improved characteristics for bone tissue engineering when compared with SF scaffolds alone. The in vitro bioactivity assays using a simulated body fluid showed the growth of an apatite layer. Furthermore, in vitro assays using human adipose-derived stem cells presented different effects on cell proliferation/differentiation when varying the doping agents in the biofunctional scaffolds. The incorporation of Zn into the scaffolds led to improved proliferation, while the Sr- and Mn-doped scaffolds presented higher osteogenic potential as demonstrated by DNA quantification and alkaline phosphatase activity. The combination of Sr with Zn led to an influence on cell proliferation and osteogenesis when compared with single ions. Our results indicate that biofunctional ionic-doped composite scaffolds are good candidates for further in vivo studies on bone tissue regeneration.


Assuntos
Materiais Biocompatíveis/química , Osso e Ossos/efeitos dos fármacos , Fosfatos de Cálcio/química , Fibroínas/química , Materiais Biocompatíveis/farmacologia , Fenômenos Biomecânicos , Osso e Ossos/citologia , Osso e Ossos/fisiologia , Diferenciação Celular , Fibroínas/farmacologia , Humanos , Engenharia Tecidual , Alicerces Teciduais
2.
J Biomater Sci Polym Ed ; 32(15): 1966-1982, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34228590

RESUMO

The bone is a complex and dynamic structure subjected to constant stress and remodeling. Due to the worldwide incidence of bone disorders, tissue scaffolds and engineered bone tissues have emerged as solutions for bone grafting, which require sophisticated scaffolding architectures while keeping high mechanical performance. However, the conjugation of a bone-like scaffold architecture with efficient mechanical properties is still a critical challenge for biomedical applications. In this sense, the present study focused on the modulating the architecture of silk fibroin (SF) scaffolds crosslinked with horseradish peroxidase and mixed with zinc (Zn) and strontium (Sr)-doped ß-tricalcium phosphate (ZnSr.TCP) to mimic bone structures. The ZnSr.TCP-SF hydrogels were tuned by programmable ice-templating parameters, and further freeze-dried, in order to obtain 3D scaffolds with controlled pore orientation. The results showed interconnected channels in the ZnSr.TCP-SF scaffolds that mimic the porous network of the native subchondral bone matrix. The architecture of the scaffolds was characterized by microCT, showing tunable pore size according to freezing temperatures (-196 °C: ∼80.2 ± 20.5 µm; -80 °C: ∼73.1 ± 20.5 µm; -20 °C: ∼104.7 ± 33.7 µm). The swelling ratio, weight loss, and rheological properties were also assessed, revealing efficient scaffold integrity and morphology after aqueous immersion. Thus, the ZnSr.TCP-SF scaffolds made of aligned porous structure were developed as affordable candidates for future applications in clinical osteoregeneration and in vitro bone tissue modelling.


Assuntos
Fibroínas , Engenharia Tecidual , Osso e Ossos , Fosfatos de Cálcio , Gelo , Porosidade , Alicerces Teciduais
3.
J Tissue Eng Regen Med ; 11(7): 1949-1962, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-26510640

RESUMO

Osteochondral defects of the ankle are common lesions affecting the talar cartilage and subchondral bone. Current treatments include cell-based therapies but are frequently associated with donor-site morbidity. Our objective is to characterize the posterior process of the talus (SP) and the os trigonum (OT) tissues and investigate their potential as a new source of viable cells for application in tissue engineering and regenerative medicine. SP and OT tissues obtained from six patients were characterized by micro-computed tomography and histological, histomorphometric and immunohistochemical analyses. Proliferation and viability of isolated cells were evaluated by MTS assay, DNA quantification and live/dead staining. The TUNEL assay was performed to evaluate cell death by apoptosis. Moreover, the production of extracellular matrix was evaluated by toluidine blue staining, whereas cells phenotype was investigated by flow cytometry. Characterization of ankle explants showed the presence of a cartilage tissue layer in both SP and OT tissues, which represented at least 20%, on average, of the explant. The presence of type II collagen was detected in the extracellular matrix. Isolated cells presented a round morphology typical of chondrocytes. In in vitro studies, cells were viable and proliferating for up to 21 days of culture. No signs of apoptosis were detected. Flow-cytometry analysis revealed that isolated cells maintained the expression of several chondrocytic markers during culture. The results indicated that the SP and OT tissues were a reliable source of viable chondrocytes, which could find promising applications in ACI/MACI strategies with minimal concerns regarding donor zone complications. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Cartilagem , Proliferação de Células , Tálus/citologia , Tálus/metabolismo , Engenharia Tecidual/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA