Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur Respir J ; 64(1)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38575161

RESUMO

BACKGROUND: Some individuals experience prolonged illness after acute coronavirus disease 2019 (COVID-19). We assessed whether pre-infection symptoms affected post-acute COVID illness duration. METHODS: Survival analysis was performed in adults (n=23 452) with community-managed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection prospectively self-logging data through the ZOE COVID Symptom Study app, at least weekly, from 8 weeks before to 12 weeks after COVID-19 onset, conditioned on presence versus absence of baseline symptoms (4-8 weeks before COVID-19). A case-control study was performed in 1350 individuals with long illness (≥8 weeks, including 906 individuals (67.1%) with illness ≥12 weeks), matched 1:1 (for age, sex, body mass index, testing week, prior infection, vaccination, smoking, index of multiple deprivation) with 1350 individuals with short illness (<4 weeks). Baseline symptoms were compared between the two groups, and against post-COVID symptoms. RESULTS: Individuals reporting baseline symptoms had longer COVID-related symptom duration (median 15 days versus 10 days for individuals without baseline symptoms) with baseline fatigue nearly doubling duration. Two-thirds (910 (67.4%) of 1350) of individuals with long illness were asymptomatic beforehand. However, 440 (32.6%) had baseline symptoms, versus 255 (18.9%) of 1350 individuals with short illness (p<0.0001). Baseline symptoms doubled the odds ratio for long illness (2.14, 95% CI 1.78-2.57). Prior comorbidities were more common in individuals with long versus short illness. In individuals with long illness, baseline symptomatic (versus asymptomatic) individuals were more likely to be female, younger, and have prior comorbidities; and baseline and post-acute symptoms, and symptom burden, correlated strongly. CONCLUSIONS: Individuals experiencing symptoms before COVID-19 had longer illness duration and increased odds of long illness. However, many individuals with long illness were well before SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/complicações , Feminino , Masculino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto , Idoso , Fatores de Tempo , Síndrome de COVID-19 Pós-Aguda , Análise de Sobrevida , Fadiga/epidemiologia
2.
J Neurol Neurosurg Psychiatry ; 92(12): 1254-1258, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34583944

RESUMO

BACKGROUND: Mental health issues have been reported after SARS-CoV-2 infection. However, comparison to prevalence in uninfected individuals and contribution from common risk factors (eg, obesity and comorbidities) have not been examined. We identified how COVID-19 relates to mental health in the large community-based COVID Symptom Study. METHODS: We assessed anxiety and depression symptoms using two validated questionnaires in 413148 individuals between February and April 2021; 26998 had tested positive for SARS-CoV-2. We adjusted for physical and mental prepandemic comorbidities, body mass index (BMI), age and sex. FINDINGS: Overall, 26.4% of participants met screening criteria for general anxiety and depression. Anxiety and depression were slightly more prevalent in previously SARS-CoV-2-positive (30.4%) vs SARS-CoV-2-negative (26.1%) individuals. This association was small compared with the effect of an unhealthy BMI and the presence of other comorbidities, and not evident in younger participants (≤40 years). Findings were robust to multiple sensitivity analyses. Association between SARS-CoV-2 infection and anxiety and depression was stronger in individuals with recent (<30 days) versus more distant (>120 days) infection, suggesting a short-term effect. INTERPRETATION: A small association was identified between SARS-CoV-2 infection and anxiety and depression symptoms. The proportion meeting criteria for self-reported anxiety and depression disorders is only slightly higher than prepandemic.


Assuntos
Ansiedade/epidemiologia , COVID-19/psicologia , Depressão/epidemiologia , Aplicativos Móveis , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Saúde Mental , Pessoa de Meia-Idade , Prevalência , SARS-CoV-2 , Autorrelato , Adulto Jovem
3.
Sci Rep ; 14(1): 17581, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080381

RESUMO

Tuberculous meningitis (TBM) is the most lethal form of tuberculosis. Clinical features, such as coma, can predict death, but they are insufficient for the accurate prognosis of other outcomes, especially when impacted by co-morbidities such as HIV infection. Brain magnetic resonance imaging (MRI) characterises the extent and severity of disease and may enable more accurate prediction of complications and poor outcomes. We analysed clinical and brain MRI data from a prospective longitudinal study of 216 adults with TBM; 73 (34%) were HIV-positive, a factor highly correlated with mortality. We implemented an end-to-end framework to model clinical and imaging features to predict disease progression. Our model used state-of-the-art machine learning models for automatic imaging feature encoding, and time-series models for forecasting, to predict TBM progression. The proposed approach is designed to be robust to missing data via a novel tailored model optimisation framework. Our model achieved a 60% balanced accuracy in predicting the prognosis of TBM patients over the six different classes. HIV status did not alter the performance of the models. Furthermore, our approach identified brain morphological lesions caused by TBM in both HIV and non-HIV-infected, associating lesions to the disease staging with an overall accuracy of 96%. These results suggest that the lesions caused by TBM are analogous in both populations, regardless of the severity of the disease. Lastly, our models correctly identified changes in disease symptomatology and severity in 80% of the cases. Our approach is the first attempt at predicting the prognosis of TBM by combining imaging and clinical data, via a machine learning model. The approach has the potential to accurately predict disease progression and enable timely clinical intervention.


Assuntos
Encéfalo , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Tuberculose Meníngea , Humanos , Tuberculose Meníngea/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Prognóstico , Masculino , Feminino , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Pessoa de Meia-Idade , Estudos Prospectivos , Progressão da Doença , Infecções por HIV/complicações , Infecções por HIV/diagnóstico por imagem , Estudos Longitudinais
4.
Neuro Oncol ; 26(6): 1138-1151, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38285679

RESUMO

BACKGROUND: The aim was to predict survival of glioblastoma at 8 months after radiotherapy (a period allowing for completing a typical course of adjuvant temozolomide), by applying deep learning to the first brain MRI after radiotherapy completion. METHODS: Retrospective and prospective data were collected from 206 consecutive glioblastoma, isocitrate dehydrogenase -wildtype patients diagnosed between March 2014 and February 2022 across 11 UK centers. Models were trained on 158 retrospective patients from 3 centers. Holdout test sets were retrospective (n = 19; internal validation), and prospective (n = 29; external validation from 8 distinct centers). Neural network branches for T2-weighted and contrast-enhanced T1-weighted inputs were concatenated to predict survival. A nonimaging branch (demographics/MGMT/treatment data) was also combined with the imaging model. We investigated the influence of individual MR sequences; nonimaging features; and weighted dense blocks pretrained for abnormality detection. RESULTS: The imaging model outperformed the nonimaging model in all test sets (area under the receiver-operating characteristic curve, AUC P = .038) and performed similarly to a combined imaging/nonimaging model (P > .05). Imaging, nonimaging, and combined models applied to amalgamated test sets gave AUCs of 0.93, 0.79, and 0.91. Initializing the imaging model with pretrained weights from 10 000s of brain MRIs improved performance considerably (amalgamated test sets without pretraining 0.64; P = .003). CONCLUSIONS: A deep learning model using MRI images after radiotherapy reliably and accurately determined survival of glioblastoma. The model serves as a prognostic biomarker identifying patients who will not survive beyond a typical course of adjuvant temozolomide, thereby stratifying patients into those who might require early second-line or clinical trial treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imageamento por Ressonância Magnética , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Glioblastoma/mortalidade , Glioblastoma/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Estudos Prospectivos , Idoso , Prognóstico , Aprendizado Profundo , Adulto , Taxa de Sobrevida , Seguimentos , Temozolomida/uso terapêutico
5.
EClinicalMedicine ; 62: 102086, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37654669

RESUMO

Background: Cognitive impairment has been reported after many types of infection, including SARS-CoV-2. Whether deficits following SARS-CoV-2 improve over time is unclear. Studies to date have focused on hospitalised individuals with up to a year follow-up. The presence, magnitude, persistence and correlations of effects in community-based cases remain relatively unexplored. Methods: Cognitive performance (working memory, attention, reasoning, motor control) was assessed in a prospective cohort study of participants from the United Kingdom COVID Symptom Study Biobank between July 12, 2021 and August 27, 2021 (Round 1), and between April 28, 2022 and June 21, 2022 (Round 2). Participants, recruited from the COVID Symptom Study smartphone app, comprised individuals with and without SARS-CoV-2 infection and varying symptom duration. Effects of COVID-19 exposures on cognitive accuracy and reaction time scores were estimated using multivariable ordinary least squares linear regression models weighted for inverse probability of participation, adjusting for potential confounders and mediators. The role of ongoing symptoms after COVID-19 infection was examined stratifying for self-perceived recovery. Longitudinal analysis assessed change in cognitive performance between rounds. Findings: 3335 individuals completed Round 1, of whom 1768 also completed Round 2. At Round 1, individuals with previous positive SARS-CoV-2 tests had lower cognitive accuracy (N = 1737, ß = -0.14 standard deviations, SDs, 95% confidence intervals, CI: -0.21, -0.07) than negative controls. Deficits were largest for positive individuals with ≥12 weeks of symptoms (N = 495, ß = -0.22 SDs, 95% CI: -0.35, -0.09). Effects were comparable to hospital presentation during illness (N = 281, ß = -0.31 SDs, 95% CI: -0.44, -0.18), and 10 years age difference (60-70 years vs. 50-60 years, ß = -0.21 SDs, 95% CI: -0.30, -0.13) in the whole study population. Stratification by self-reported recovery revealed that deficits were only detectable in SARS-CoV-2 positive individuals who did not feel recovered from COVID-19, whereas individuals who reported full recovery showed no deficits. Longitudinal analysis showed no evidence of cognitive change over time, suggesting that cognitive deficits for affected individuals persisted at almost 2 years since initial infection. Interpretation: Cognitive deficits following SARS-CoV-2 infection were detectable nearly two years post infection, and largest for individuals with longer symptom durations, ongoing symptoms, and/or more severe infection. However, no such deficits were detected in individuals who reported full recovery from COVID-19. Further work is needed to monitor and develop understanding of recovery mechanisms for those with ongoing symptoms. Funding: Chronic Disease Research Foundation, Wellcome Trust, National Institute for Health and Care Research, Medical Research Council, British Heart Foundation, Alzheimer's Society, European Union, COVID-19 Driver Relief Fund, French National Research Agency.

6.
Lancet Digit Health ; 5(7): e421-e434, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37202336

RESUMO

BACKGROUND: Self-reported symptom studies rapidly increased understanding of SARS-CoV-2 during the COVID-19 pandemic and enabled monitoring of long-term effects of COVID-19 outside hospital settings. Post-COVID-19 condition presents as heterogeneous profiles, which need characterisation to enable personalised patient care. We aimed to describe post-COVID-19 condition profiles by viral variant and vaccination status. METHODS: In this prospective longitudinal cohort study, we analysed data from UK-based adults (aged 18-100 years) who regularly provided health reports via the Covid Symptom Study smartphone app between March 24, 2020, and Dec 8, 2021. We included participants who reported feeling physically normal for at least 30 days before testing positive for SARS-CoV-2 who subsequently developed long COVID (ie, symptoms lasting longer than 28 days from the date of the initial positive test). We separately defined post-COVID-19 condition as symptoms that persisted for at least 84 days after the initial positive test. We did unsupervised clustering analysis of time-series data to identify distinct symptom profiles for vaccinated and unvaccinated people with post-COVID-19 condition after infection with the wild-type, alpha (B.1.1.7), or delta (B.1.617.2 and AY.x) variants of SARS-CoV-2. Clusters were then characterised on the basis of symptom prevalence, duration, demography, and previous comorbidities. We also used an additional testing sample with additional data from the Covid Symptom Study Biobank (collected between October, 2020, and April, 2021) to investigate the effects of the identified symptom clusters of post-COVID-19 condition on the lives of affected people. FINDINGS: We included 9804 people from the COVID Symptom Study with long COVID, 1513 (15%) of whom developed post-COVID-19 condition. Sample sizes were sufficient only for analyses of the unvaccinated wild-type, unvaccinated alpha variant, and vaccinated delta variant groups. We identified distinct profiles of symptoms for post-COVID-19 condition within and across variants: four endotypes were identified for infections due to the wild-type variant (in unvaccinated people), seven for the alpha variant (in unvaccinated people), and five for the delta variant (in vaccinated people). Across all variants, we identified a cardiorespiratory cluster of symptoms, a central neurological cluster, and a multi-organ systemic inflammatory cluster. These three main clusers were confirmed in a testing sample. Gastrointestinal symptoms clustered in no more than two specific phenotypes per viral variant. INTERPRETATION: Our unsupervised analysis identified different profiles of post-COVID-19 condition, characterised by differing symptom combinations, durations, and functional outcomes. Our classification could be useful for understanding the distinct mechanisms of post-COVID-19 condition, as well as for identification of subgroups of individuals who might be at risk of prolonged debilitation. FUNDING: UK Government Department of Health and Social Care, Chronic Disease Research Foundation, The Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK Research and Innovation London Medical Imaging & Artificial Intelligence Centre for Value-Based Healthcare, UK National Institute for Health Research, UK Medical Research Council, British Heart Foundation, UK Alzheimer's Society, and ZOE.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Estudos Longitudinais , Inteligência Artificial , Pandemias , Síndrome de COVID-19 Pós-Aguda , Estudos Prospectivos
7.
Lancet Reg Health Eur ; 19: 100429, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35821715

RESUMO

Background: We aimed to explore the effectiveness of one-dose BNT162b2 vaccination upon SARS-CoV-2 infection, its effect on COVID-19 presentation, and post-vaccination symptoms in children and adolescents (CA) in the UK during periods of Delta and Omicron variant predominance. Methods: In this prospective longitudinal cohort study, we analysed data from 115,775 CA aged 12-17 years, proxy-reported through the Covid Symptom Study (CSS) smartphone application. We calculated post-vaccination infection risk after one dose of BNT162b2, and described the illness profile of CA with post-vaccination SARS-CoV-2 infection, compared to unvaccinated CA, and post-vaccination side-effects. Findings: Between August 5, 2021 and February 14, 2022, 25,971 UK CA aged 12-17 years received one dose of BNT162b2 vaccine. The probability of testing positive for infection diverged soon after vaccination, and was lower in CA with prior SARS-CoV-2 infection. Vaccination reduced proxy-reported infection risk (-80·4% (95% CI -0·82 -0·78) and -53·7% (95% CI -0·62 -0·43) at 14-30 days with Delta and Omicron variants respectively, and -61·5% (95% CI -0·74 -0·44) and -63·7% (95% CI -0·68 -0.59) after 61-90 days). Vaccinated CA who contracted SARS-CoV-2 during the Delta period had milder disease than unvaccinated CA; during the Omicron period this was only evident in children aged 12-15 years. Overall disease profile was similar in both vaccinated and unvaccinated CA. Post-vaccination local side-effects were common, systemic side-effects were uncommon, and both resolved within few days (3 days in most cases). Interpretation: One dose of BNT162b2 vaccine reduced risk of SARS-CoV-2 infection for at least 90 days in CA aged 12-17 years. Vaccine protection varied for SARS-CoV-2 variant type (lower for Omicron than Delta variant), and was enhanced by pre-vaccination SARS-CoV-2 infection. Severity of COVID-19 presentation after vaccination was generally milder, although unvaccinated CA also had generally mild disease. Overall, vaccination was well-tolerated. Funding: UK Government Department of Health and Social Care, Chronic Disease Research Foundation, The Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK Research and Innovation London Medical Imaging & Artificial Intelligence Centre for Value Based Healthcare, UK National Institute for Health Research, UK Medical Research Council, British Heart Foundation and Alzheimer's Society, and ZOE Limited.

8.
PLOS Glob Public Health ; 2(1): e0000028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962066

RESUMO

Symptomatic testing programmes are crucial to the COVID-19 pandemic response. We sought to examine United Kingdom (UK) testing rates amongst individuals with test-qualifying symptoms, and factors associated with not testing. We analysed a cohort of untested symptomatic app users (N = 1,237), nested in the Zoe COVID Symptom Study (Zoe, N = 4,394,948); and symptomatic respondents who wanted, but did not have a test (N = 1,956), drawn from a University of Maryland survey administered to Facebook users (The Global COVID-19 Trends and Impact Survey [CTIS], N = 775,746). The proportion tested among individuals with incident test-qualifying symptoms rose from ~20% to ~75% from April to December 2020 in Zoe. Testing was lower with one vs more symptoms (72.9% vs 84.6% p<0.001), or short vs long symptom duration (69.9% vs 85.4% p<0.001). 40.4% of survey respondents did not identify all three test-qualifying symptoms. Symptom identification decreased for every decade older (OR = 0.908 [95% CI 0.883-0.933]). Amongst symptomatic UMD-CTIS respondents who wanted but did not have a test, not knowing where to go was the most cited factor (32.4%); this increased for each decade older (OR = 1.207 [1.129-1.292]) and for every 4-years fewer in education (OR = 0.685 [0.599-0.783]). Despite current UK messaging on COVID-19 testing, there is a knowledge gap about when and where to test, and this may be contributing to the ~25% testing gap. Risk factors, including older age and less education, highlight potential opportunities to tailor public health messages. The testing gap may be ever larger in countries that do not have extensive, free testing, as the UK does.

9.
Sci Rep ; 12(1): 10904, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764879

RESUMO

The Delta (B.1.617.2) variant was the predominant UK circulating SARS-CoV-2 strain between May and December 2021. How Delta infection compares with previous variants is unknown. This prospective observational cohort study assessed symptomatic adults participating in the app-based COVID Symptom Study who tested positive for SARS-CoV-2 from May 26 to July 1, 2021 (Delta overwhelmingly the predominant circulating UK variant), compared (1:1, age- and sex-matched) with individuals presenting from December 28, 2020 to May 6, 2021 (Alpha (B.1.1.7) the predominant variant). We assessed illness (symptoms, duration, presentation to hospital) during Alpha- and Delta-predominant timeframes; and transmission, reinfection, and vaccine effectiveness during the Delta-predominant period. 3581 individuals (aged 18 to 100 years) from each timeframe were assessed. The seven most frequent symptoms were common to both variants. Within the first 28 days of illness, some symptoms were more common with Delta versus Alpha infection (including fever, sore throat, and headache) and some vice versa (dyspnoea). Symptom burden in the first week was higher with Delta versus Alpha infection; however, the odds of any given symptom lasting ≥ 7 days was either lower or unchanged. Illness duration ≥ 28 days was lower with Delta versus Alpha infection, though unchanged in unvaccinated individuals. Hospitalisation for COVID-19 was unchanged. The Delta variant appeared more (1.49) transmissible than Alpha. Re-infections were low in all UK regions. Vaccination markedly reduced the risk of Delta infection (by 69-84%). We conclude that COVID-19 from Delta or Alpha infections is similar. The Delta variant is more transmissible than Alpha; however, current vaccines showed good efficacy against disease. This research framework can be useful for future comparisons with new emerging variants.


Assuntos
COVID-19 , Hepatite D , Adulto , COVID-19/epidemiologia , Humanos , Estudos Prospectivos , Reinfecção , SARS-CoV-2/genética
10.
Lancet Infect Dis ; 22(1): 43-55, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34480857

RESUMO

BACKGROUND: COVID-19 vaccines show excellent efficacy in clinical trials and effectiveness in real-world data, but some people still become infected with SARS-CoV-2 after vaccination. This study aimed to identify risk factors for post-vaccination SARS-CoV-2 infection and describe the characteristics of post-vaccination illness. METHODS: This prospective, community-based, nested, case-control study used self-reported data (eg, on demographics, geographical location, health risk factors, and COVID-19 test results, symptoms, and vaccinations) from UK-based, adult (≥18 years) users of the COVID Symptom Study mobile phone app. For the risk factor analysis, cases had received a first or second dose of a COVID-19 vaccine between Dec 8, 2020, and July 4, 2021; had either a positive COVID-19 test at least 14 days after their first vaccination (but before their second; cases 1) or a positive test at least 7 days after their second vaccination (cases 2); and had no positive test before vaccination. Two control groups were selected (who also had not tested positive for SARS-CoV-2 before vaccination): users reporting a negative test at least 14 days after their first vaccination but before their second (controls 1) and users reporting a negative test at least 7 days after their second vaccination (controls 2). Controls 1 and controls 2 were matched (1:1) with cases 1 and cases 2, respectively, by the date of the post-vaccination test, health-care worker status, and sex. In the disease profile analysis, we sub-selected participants from cases 1 and cases 2 who had used the app for at least 14 consecutive days after testing positive for SARS-CoV-2 (cases 3 and cases 4, respectively). Controls 3 and controls 4 were unvaccinated participants reporting a positive SARS-CoV-2 test who had used the app for at least 14 consecutive days after the test, and were matched (1:1) with cases 3 and 4, respectively, by the date of the positive test, health-care worker status, sex, body-mass index (BMI), and age. We used univariate logistic regression models (adjusted for age, BMI, and sex) to analyse the associations between risk factors and post-vaccination infection, and the associations of individual symptoms, overall disease duration, and disease severity with vaccination status. FINDINGS: Between Dec 8, 2020, and July 4, 2021, 1 240 009 COVID Symptom Study app users reported a first vaccine dose, of whom 6030 (0·5%) subsequently tested positive for SARS-CoV-2 (cases 1), and 971 504 reported a second dose, of whom 2370 (0·2%) subsequently tested positive for SARS-CoV-2 (cases 2). In the risk factor analysis, frailty was associated with post-vaccination infection in older adults (≥60 years) after their first vaccine dose (odds ratio [OR] 1·93, 95% CI 1·50-2·48; p<0·0001), and individuals living in highly deprived areas had increased odds of post-vaccination infection following their first vaccine dose (OR 1·11, 95% CI 1·01-1·23; p=0·039). Individuals without obesity (BMI <30 kg/m2) had lower odds of infection following their first vaccine dose (OR 0·84, 95% CI 0·75-0·94; p=0·0030). For the disease profile analysis, 3825 users from cases 1 were included in cases 3 and 906 users from cases 2 were included in cases 4. Vaccination (compared with no vaccination) was associated with reduced odds of hospitalisation or having more than five symptoms in the first week of illness following the first or second dose, and long-duration (≥28 days) symptoms following the second dose. Almost all symptoms were reported less frequently in infected vaccinated individuals than in infected unvaccinated individuals, and vaccinated participants were more likely to be completely asymptomatic, especially if they were 60 years or older. INTERPRETATION: To minimise SARS-CoV-2 infection, at-risk populations must be targeted in efforts to boost vaccine effectiveness and infection control measures. Our findings might support caution around relaxing physical distancing and other personal protective measures in the post-vaccination era, particularly around frail older adults and individuals living in more deprived areas, even if these individuals are vaccinated, and might have implications for strategies such as booster vaccinations. FUNDING: ZOE, the UK Government Department of Health and Social Care, the Wellcome Trust, the UK Engineering and Physical Sciences Research Council, UK Research and Innovation London Medical Imaging and Artificial Intelligence Centre for Value Based Healthcare, the UK National Institute for Health Research, the UK Medical Research Council, the British Heart Foundation, and the Alzheimer's Society.


Assuntos
COVID-19/epidemiologia , Aplicativos Móveis/estatística & dados numéricos , Vacinação/estatística & dados numéricos , Eficácia de Vacinas , Adulto , Idoso , COVID-19/prevenção & controle , Teste para COVID-19/estatística & dados numéricos , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Autorrelato , Reino Unido/epidemiologia , Adulto Jovem
11.
EClinicalMedicine ; 42: 101212, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34873584

RESUMO

BACKGROUND: Identifying and testing individuals likely to have SARS-CoV-2 is critical for infection control, including post-vaccination. Vaccination is a major public health strategy to reduce SARS-CoV-2 infection globally. Some individuals experience systemic symptoms post-vaccination, which overlap with COVID-19 symptoms. This study compared early post-vaccination symptoms in individuals who subsequently tested positive or negative for SARS-CoV-2, using data from the COVID Symptom Study (CSS) app. METHODS: We conducted a prospective observational study in 1,072,313 UK CSS participants who were asymptomatic when vaccinated with Pfizer-BioNTech mRNA vaccine (BNT162b2) or Oxford-AstraZeneca adenovirus-vectored vaccine (ChAdOx1 nCoV-19) between 8 December 2020 and 17 May 2021, who subsequently reported symptoms within seven days (N=362,770) (other than local symptoms at injection site) and were tested for SARS-CoV-2 (N=14,842), aiming to differentiate vaccination side-effects per se from superimposed SARS-CoV-2 infection. The post-vaccination symptoms and SARS-CoV-2 test results were contemporaneously logged by participants. Demographic and clinical information (including comorbidities) were recorded. Symptom profiles in individuals testing positive were compared with a 1:1 matched population testing negative, including using machine learning and multiple models considering UK testing criteria. FINDINGS: Differentiating post-vaccination side-effects alone from early COVID-19 was challenging, with a sensitivity in identification of individuals testing positive of 0.6 at best. Most of these individuals did not have fever, persistent cough, or anosmia/dysosmia, requisite symptoms for accessing UK testing; and many only had systemic symptoms commonly seen post-vaccination in individuals negative for SARS-CoV-2 (headache, myalgia, and fatigue). INTERPRETATION: Post-vaccination symptoms per se cannot be differentiated from COVID-19 with clinical robustness, either using symptom profiles or machine-derived models. Individuals presenting with systemic symptoms post-vaccination should be tested for SARS-CoV-2 or quarantining, to prevent community spread. FUNDING: UK Government Department of Health and Social Care, Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK National Institute for Health Research, UK Medical Research Council and British Heart Foundation, Chronic Disease Research Foundation, Zoe Limited.

12.
Lancet Public Health ; 6(5): e335-e345, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33857453

RESUMO

BACKGROUND: The SARS-CoV-2 variant B.1.1.7 was first identified in December, 2020, in England. We aimed to investigate whether increases in the proportion of infections with this variant are associated with differences in symptoms or disease course, reinfection rates, or transmissibility. METHODS: We did an ecological study to examine the association between the regional proportion of infections with the SARS-CoV-2 B.1.1.7 variant and reported symptoms, disease course, rates of reinfection, and transmissibility. Data on types and duration of symptoms were obtained from longitudinal reports from users of the COVID Symptom Study app who reported a positive test for COVID-19 between Sept 28 and Dec 27, 2020 (during which the prevalence of B.1.1.7 increased most notably in parts of the UK). From this dataset, we also estimated the frequency of possible reinfection, defined as the presence of two reported positive tests separated by more than 90 days with a period of reporting no symptoms for more than 7 days before the second positive test. The proportion of SARS-CoV-2 infections with the B.1.1.7 variant across the UK was estimated with use of genomic data from the COVID-19 Genomics UK Consortium and data from Public Health England on spike-gene target failure (a non-specific indicator of the B.1.1.7 variant) in community cases in England. We used linear regression to examine the association between reported symptoms and proportion of B.1.1.7. We assessed the Spearman correlation between the proportion of B.1.1.7 cases and number of reinfections over time, and between the number of positive tests and reinfections. We estimated incidence for B.1.1.7 and previous variants, and compared the effective reproduction number, Rt, for the two incidence estimates. FINDINGS: From Sept 28 to Dec 27, 2020, positive COVID-19 tests were reported by 36 920 COVID Symptom Study app users whose region was known and who reported as healthy on app sign-up. We found no changes in reported symptoms or disease duration associated with B.1.1.7. For the same period, possible reinfections were identified in 249 (0·7% [95% CI 0·6-0·8]) of 36 509 app users who reported a positive swab test before Oct 1, 2020, but there was no evidence that the frequency of reinfections was higher for the B.1.1.7 variant than for pre-existing variants. Reinfection occurrences were more positively correlated with the overall regional rise in cases (Spearman correlation 0·56-0·69 for South East, London, and East of England) than with the regional increase in the proportion of infections with the B.1.1.7 variant (Spearman correlation 0·38-0·56 in the same regions), suggesting B.1.1.7 does not substantially alter the risk of reinfection. We found a multiplicative increase in the Rt of B.1.1.7 by a factor of 1·35 (95% CI 1·02-1·69) relative to pre-existing variants. However, Rt fell below 1 during regional and national lockdowns, even in regions with high proportions of infections with the B.1.1.7 variant. INTERPRETATION: The lack of change in symptoms identified in this study indicates that existing testing and surveillance infrastructure do not need to change specifically for the B.1.1.7 variant. In addition, given that there was no apparent increase in the reinfection rate, vaccines are likely to remain effective against the B.1.1.7 variant. FUNDING: Zoe Global, Department of Health (UK), Wellcome Trust, Engineering and Physical Sciences Research Council (UK), National Institute for Health Research (UK), Medical Research Council (UK), Alzheimer's Society.


Assuntos
COVID-19/virologia , Reinfecção/virologia , SARS-CoV-2/isolamento & purificação , Adolescente , Adulto , Idoso , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/transmissão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reinfecção/epidemiologia , Reino Unido/epidemiologia , Adulto Jovem
13.
Lancet Digit Health ; 3(9): e587-e598, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34334333

RESUMO

BACKGROUND: Self-reported symptoms during the COVID-19 pandemic have been used to train artificial intelligence models to identify possible infection foci. To date, these models have only considered the culmination or peak of symptoms, which is not suitable for the early detection of infection. We aimed to estimate the probability of an individual being infected with SARS-CoV-2 on the basis of early self-reported symptoms to enable timely self-isolation and urgent testing. METHODS: In this large-scale, prospective, epidemiological surveillance study, we used prospective, observational, longitudinal, self-reported data from participants in the UK on 19 symptoms over 3 days after symptoms onset and COVID-19 PCR test results extracted from the COVID-19 Symptom Study mobile phone app. We divided the study population into a training set (those who reported symptoms between April 29, 2020, and Oct 15, 2020) and a test set (those who reported symptoms between Oct 16, 2020, and Nov 30, 2020), and used three models to analyse the self-reported symptoms: the UK's National Health Service (NHS) algorithm, logistic regression, and the hierarchical Gaussian process model we designed to account for several important variables (eg, specific COVID-19 symptoms, comorbidities, and clinical information). Model performance to predict COVID-19 positivity was compared in terms of sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) in the test set. For the hierarchical Gaussian process model, we also evaluated the relevance of symptoms in the early detection of COVID-19 in population subgroups stratified according to occupation, sex, age, and body-mass index. FINDINGS: The training set comprised 182 991 participants and the test set comprised 15 049 participants. When trained on 3 days of self-reported symptoms, the hierarchical Gaussian process model had a higher prediction AUC (0·80 [95% CI 0·80-0·81]) than did the logistic regression model (0·74 [0·74-0·75]) and the NHS algorithm (0·67 [0·67-0·67]). AUCs for all models increased with the number of days of self-reported symptoms, but were still high for the hierarchical Gaussian process model at day 1 (0·73 [95% CI 0·73-0·74]) and day 2 (0·79 [0·78-0·79]). At day 3, the hierarchical Gaussian process model also had a significantly higher sensitivity, but a non-statistically lower specificity, than did the two other models. The hierarchical Gaussian process model also identified different sets of relevant features to detect COVID-19 between younger and older subgroups, and between health-care workers and non-health-care workers. When used during different pandemic periods, the model was robust to changes in populations. INTERPRETATION: Early detection of SARS-CoV-2 infection is feasible with our model. Such early detection is crucial to contain the spread of COVID-19 and efficiently allocate medical resources. FUNDING: ZOE, the UK Government Department of Health and Social Care, the Wellcome Trust, the UK Engineering and Physical Sciences Research Council, the UK National Institute for Health Research, the UK Medical Research Council, the British Heart Foundation, the Alzheimer's Society, the Chronic Disease Research Foundation, and the Massachusetts Consortium on Pathogen Readiness.


Assuntos
Inteligência Artificial , COVID-19/diagnóstico , Modelos Biológicos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anosmia , COVID-19/complicações , Dor no Peito , Dispneia , Diagnóstico Precoce , Estudos Epidemiológicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Aplicativos Móveis , Pandemias , Estudos Prospectivos , SARS-CoV-2 , Autorrelato , Sensibilidade e Especificidade , Reino Unido , Adulto Jovem
14.
Lancet Child Adolesc Health ; 5(10): 708-718, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358472

RESUMO

BACKGROUND: In children, SARS-CoV-2 infection is usually asymptomatic or causes a mild illness of short duration. Persistent illness has been reported; however, its prevalence and characteristics are unclear. We aimed to determine illness duration and characteristics in symptomatic UK school-aged children tested for SARS-CoV-2 using data from the COVID Symptom Study, one of the largest UK citizen participatory epidemiological studies to date. METHODS: In this prospective cohort study, data from UK school-aged children (age 5-17 years) were reported by an adult proxy. Participants were voluntary, and used a mobile application (app) launched jointly by Zoe Limited and King's College London. Illness duration and symptom prevalence, duration, and burden were analysed for children testing positive for SARS-CoV-2 for whom illness duration could be determined, and were assessed overall and for younger (age 5-11 years) and older (age 12-17 years) groups. Children with longer than 1 week between symptomatic reports on the app were excluded from analysis. Data from symptomatic children testing negative for SARS-CoV-2, matched 1:1 for age, gender, and week of testing, were also assessed. FINDINGS: 258 790 children aged 5-17 years were reported by an adult proxy between March 24, 2020, and Feb 22, 2021, of whom 75 529 had valid test results for SARS-CoV-2. 1734 children (588 younger and 1146 older children) had a positive SARS-CoV-2 test result and calculable illness duration within the study timeframe (illness onset between Sept 1, 2020, and Jan 24, 2021). The most common symptoms were headache (1079 [62·2%] of 1734 children), and fatigue (954 [55·0%] of 1734 children). Median illness duration was 6 days (IQR 3-11) versus 3 days (2-7) in children testing negative, and was positively associated with age (Spearman's rank-order rs 0·19, p<0·0001). Median illness duration was longer for older children (7 days, IQR 3-12) than younger children (5 days, 2-9). 77 (4·4%) of 1734 children had illness duration of at least 28 days, more commonly in older than younger children (59 [5·1%] of 1146 older children vs 18 [3·1%] of 588 younger children; p=0·046). The commonest symptoms experienced by these children during the first 4 weeks of illness were fatigue (65 [84·4%] of 77), headache (60 [77·9%] of 77), and anosmia (60 [77·9%] of 77); however, after day 28 the symptom burden was low (median 2 symptoms, IQR 1-4) compared with the first week of illness (median 6 symptoms, 4-8). Only 25 (1·8%) of 1379 children experienced symptoms for at least 56 days. Few children (15 children, 0·9%) in the negatively tested cohort had symptoms for at least 28 days; however, these children experienced greater symptom burden throughout their illness (9 symptoms, IQR 7·7-11·0 vs 8, 6-9) and after day 28 (5 symptoms, IQR 1·5-6·5 vs 2, 1-4) than did children who tested positive for SARS-CoV-2. INTERPRETATION: Although COVID-19 in children is usually of short duration with low symptom burden, some children with COVID-19 experience prolonged illness duration. Reassuringly, symptom burden in these children did not increase with time, and most recovered by day 56. Some children who tested negative for SARS-CoV-2 also had persistent and burdensome illness. A holistic approach for all children with persistent illness during the pandemic is appropriate. FUNDING: Zoe Limited, UK Government Department of Health and Social Care, Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK Research and Innovation London Medical Imaging and Artificial Intelligence Centre for Value Based Healthcare, UK National Institute for Health Research, UK Medical Research Council, British Heart Foundation, and Alzheimer's Society.


Assuntos
COVID-19/epidemiologia , COVID-19/patologia , SARS-CoV-2/isolamento & purificação , Adolescente , COVID-19/diagnóstico , COVID-19/virologia , Teste para COVID-19 , Criança , Pré-Escolar , Ciência do Cidadão , Estudos de Coortes , Efeitos Psicossociais da Doença , Feminino , Humanos , Masculino , Estudos Prospectivos , SARS-CoV-2/patogenicidade , Reino Unido
15.
medRxiv ; 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34268526

RESUMO

BACKGROUND: Mental health issues have been reported after SARS-CoV-2 infection. However, comparison to prevalence in uninfected individuals and contribution from common risk factors (e.g., obesity, comorbidities) have not been examined. We identified how COVID-19 relates to mental health in the large community-based COVID Symptom Study. METHODS: We assessed anxiety and depression symptoms using two validated questionnaires in 413,148 individuals between February and April 2021; 26,998 had tested positive for SARS-CoV-2. We adjusted for physical and mental pre-pandemic comorbidities, BMI, age, and sex. FINDINGS: Overall, 26.4% of participants met screening criteria for general anxiety and depression. Anxiety and depression were slightly more prevalent in previously SARS-CoV-2 positive (30.4%) vs. negative (26.1%) individuals. This association was small compared to the effect of an unhealthy BMI and the presence of other comorbidities, and not evident in younger participants (≤40 years). Findings were robust to multiple sensitivity analyses. Association between SARS-CoV-2 infection and anxiety and depression was stronger in individuals with recent (<30 days) vs. more distant (>120 days) infection, suggesting a short-term effect. INTERPRETATION: A small association was identified between SARS-CoV-2 infection and anxiety and depression symptoms. The proportion meeting criteria for self-reported anxiety and depression disorders is only slightly higher than pre-pandemic. FUNDING: Zoe Limited, National Institute for Health Research, Chronic Disease Research Foundation, National Institutes of Health, Medical Research Council UK.

16.
Sci Data ; 8(1): 297, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811392

RESUMO

The Covid Symptom Study, a smartphone-based surveillance study on COVID-19 symptoms in the population, is an exemplar of big data citizen science. As of May 23rd, 2021, over 5 million participants have collectively logged over 360 million self-assessment reports since its introduction in March 2020. The success of the Covid Symptom Study creates significant technical challenges around effective data curation. The primary issue is scale. The size of the dataset means that it can no longer be readily processed using standard Python-based data analytics software such as Pandas on commodity hardware. Alternative technologies exist but carry a higher technical complexity and are less accessible to many researchers. We present ExeTera, a Python-based open source software package designed to provide Pandas-like data analytics on datasets that approach terabyte scales. We present its design and capabilities, and show how it is a critical component of a data curation pipeline that enables reproducible research across an international research group for the Covid Symptom Study.


Assuntos
COVID-19/epidemiologia , Ciência do Cidadão , Curadoria de Dados , Big Data , Ciência de Dados , Conjuntos de Dados como Assunto , Monitoramento Epidemiológico , Humanos , Aplicativos Móveis , Smartphone , Software
17.
Lancet Public Health ; 6(1): e21-e29, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278917

RESUMO

BACKGROUND: As many countries seek to slow the spread of COVID-19 without reimposing national restrictions, it has become important to track the disease at a local level to identify areas in need of targeted intervention. METHODS: In this prospective, observational study, we did modelling using longitudinal, self-reported data from users of the COVID Symptom Study app in England between March 24, and Sept 29, 2020. Beginning on April 28, in England, the Department of Health and Social Care allocated RT-PCR tests for COVID-19 to app users who logged themselves as healthy at least once in 9 days and then reported any symptom. We calculated incidence of COVID-19 using the invited swab (RT-PCR) tests reported in the app, and we estimated prevalence using a symptom-based method (using logistic regression) and a method based on both symptoms and swab test results. We used incidence rates to estimate the effective reproduction number, R(t), modelling the system as a Poisson process and using Markov Chain Monte-Carlo. We used three datasets to validate our models: the Office for National Statistics (ONS) Community Infection Survey, the Real-time Assessment of Community Transmission (REACT-1) study, and UK Government testing data. We used geographically granular estimates to highlight regions with rapidly increasing case numbers, or hotspots. FINDINGS: From March 24 to Sept 29, 2020, a total of 2 873 726 users living in England signed up to use the app, of whom 2 842 732 (98·9%) provided valid age information and daily assessments. These users provided a total of 120 192 306 daily reports of their symptoms, and recorded the results of 169 682 invited swab tests. On a national level, our estimates of incidence and prevalence showed a similar sensitivity to changes to those reported in the ONS and REACT-1 studies. On Sept 28, 2020, we estimated an incidence of 15 841 (95% CI 14 023-17 885) daily cases, a prevalence of 0·53% (0·45-0·60), and R(t) of 1·17 (1·15-1·19) in England. On a geographically granular level, on Sept 28, 2020, we detected 15 (75%) of the 20 regions with highest incidence according to government test data. INTERPRETATION: Our method could help to detect rapid case increases in regions where government testing provision is lower. Self-reported data from mobile applications can provide an agile resource to inform policy makers during a quickly moving pandemic, serving as a complementary resource to more traditional instruments for disease surveillance. FUNDING: Zoe Global, UK Government Department of Health and Social Care, Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK National Institute for Health Research, UK Medical Research Council and British Heart Foundation, Alzheimer's Society, Chronic Disease Research Foundation.


Assuntos
COVID-19/epidemiologia , Hotspot de Doença , Aplicativos Móveis , Vigilância em Saúde Pública/métodos , Autorrelato , Adolescente , Adulto , Idoso , Inglaterra/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
18.
Lancet Infect Dis ; 21(7): 939-949, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33930320

RESUMO

BACKGROUND: The Pfizer-BioNTech (BNT162b2) and the Oxford-AstraZeneca (ChAdOx1 nCoV-19) COVID-19 vaccines have shown excellent safety and efficacy in phase 3 trials. We aimed to investigate the safety and effectiveness of these vaccines in a UK community setting. METHODS: In this prospective observational study, we examined the proportion and probability of self-reported systemic and local side-effects within 8 days of vaccination in individuals using the COVID Symptom Study app who received one or two doses of the BNT162b2 vaccine or one dose of the ChAdOx1 nCoV-19 vaccine. We also compared infection rates in a subset of vaccinated individuals subsequently tested for SARS-CoV-2 with PCR or lateral flow tests with infection rates in unvaccinated controls. All analyses were adjusted by age (≤55 years vs >55 years), sex, health-care worker status (binary variable), obesity (BMI <30 kg/m2vs ≥30 kg/m2), and comorbidities (binary variable, with or without comorbidities). FINDINGS: Between Dec 8, and March 10, 2021, 627 383 individuals reported being vaccinated with 655 590 doses: 282 103 received one dose of BNT162b2, of whom 28 207 received a second dose, and 345 280 received one dose of ChAdOx1 nCoV-19. Systemic side-effects were reported by 13·5% (38 155 of 282 103) of individuals after the first dose of BNT162b2, by 22·0% (6216 of 28 207) after the second dose of BNT162b2, and by 33·7% (116 473 of 345 280) after the first dose of ChAdOx1 nCoV-19. Local side-effects were reported by 71·9% (150 023 of 208 767) of individuals after the first dose of BNT162b2, by 68·5% (9025 of 13 179) after the second dose of BNT162b2, and by 58·7% (104 282 of 177 655) after the first dose of ChAdOx1 nCoV-19. Systemic side-effects were more common (1·6 times after the first dose of ChAdOx1 nCoV-19 and 2·9 times after the first dose of BNT162b2) among individuals with previous SARS-CoV-2 infection than among those without known past infection. Local effects were similarly higher in individuals previously infected than in those without known past infection (1·4 times after the first dose of ChAdOx1 nCoV-19 and 1·2 times after the first dose of BNT162b2). 3106 of 103 622 vaccinated individuals and 50 340 of 464 356 unvaccinated controls tested positive for SARS-CoV-2 infection. Significant reductions in infection risk were seen starting at 12 days after the first dose, reaching 60% (95% CI 49-68) for ChAdOx1 nCoV-19 and 69% (66-72) for BNT162b2 at 21-44 days and 72% (63-79) for BNT162b2 after 45-59 days. INTERPRETATION: Systemic and local side-effects after BNT162b2 and ChAdOx1 nCoV-19 vaccination occur at frequencies lower than reported in phase 3 trials. Both vaccines decrease the risk of SARS-CoV-2 infection after 12 days. FUNDING: ZOE Global, National Institute for Health Research, Chronic Disease Research Foundation, National Institutes of Health, UK Medical Research Council, Wellcome Trust, UK Research and Innovation, American Gastroenterological Association.


Assuntos
Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/imunologia , SARS-CoV-2/imunologia , Vacinação/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Segurança/estatística & dados numéricos , Autorrelato/estatística & dados numéricos , Reino Unido
19.
Nat Med ; 27(4): 626-631, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33692530

RESUMO

Reports of long-lasting coronavirus disease 2019 (COVID-19) symptoms, the so-called 'long COVID', are rising but little is known about prevalence, risk factors or whether it is possible to predict a protracted course early in the disease. We analyzed data from 4,182 incident cases of COVID-19 in which individuals self-reported their symptoms prospectively in the COVID Symptom Study app1. A total of 558 (13.3%) participants reported symptoms lasting ≥28 days, 189 (4.5%) for ≥8 weeks and 95 (2.3%) for ≥12 weeks. Long COVID was characterized by symptoms of fatigue, headache, dyspnea and anosmia and was more likely with increasing age and body mass index and female sex. Experiencing more than five symptoms during the first week of illness was associated with long COVID (odds ratio = 3.53 (2.76-4.50)). A simple model to distinguish between short COVID and long COVID at 7 days (total sample size, n = 2,149) showed an area under the curve of the receiver operating characteristic curve of 76%, with replication in an independent sample of 2,472 individuals who were positive for severe acute respiratory syndrome coronavirus 2. This model could be used to identify individuals at risk of long COVID for trials of prevention or treatment and to plan education and rehabilitation services.


Assuntos
COVID-19/complicações , SARS-CoV-2 , Adulto , Fatores Etários , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Fatores de Tempo
20.
medRxiv ; 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33140073

RESUMO

BACKGROUND: As many countries seek to slow the spread of COVID-19 without reimposing national restrictions, it has become important to track the disease at a local level to identify areas in need of targeted intervention. METHODS: We performed modelling on longitudinal, self-reported data from users of the COVID Symptom Study app in England between 24 March and 29 September, 2020. Combining a symptom-based predictive model for COVID-19 positivity and RT-PCR tests provided by the Department of Health we were able to estimate disease incidence, prevalence and effective reproduction number. Geographically granular estimates were used to highlight regions with rapidly increasing case numbers, or hotspots. FINDINGS: More than 2.8 million app users in England provided 120 million daily reports of their symptoms, and recorded the results of 170,000 PCR tests. On a national level our estimates of incidence and prevalence showed similar sensitivity to changes as two national community surveys: the ONS and REACT-1 studies. On 28 September 2020 we estimated 15,841 (95% CI 14,023-17,885) daily cases, a prevalence of 0.53% (95% CI 0.45-0.60), and R(t) of 1.17 (95% credible interval 1.15-1.19) in England. On a geographically granular level, on 28 September 2020 we detected 15 of the 20 regions with highest incidence according to Government test data, with indications that our method may be able to detect rapid case increases in regions where Government testing provision is more limited. INTERPRETATION: Self-reported data from mobile applications can provide an agile resource to inform policymakers during a fast-moving pandemic, serving as an independent and complementary resource to more traditional instruments for disease surveillance. FUNDING: Zoe Global Limited, Department of Health, Wellcome Trust, EPSRC, NIHR, MRC, Alzheimer's Society.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA