Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Microb Ecol ; 86(4): 3128-3132, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37433980

RESUMO

Parafrancisella adeliensis, a Francisella-like endosymbiont, was found to reside in the cytoplasm of an Antarctic strain of the bipolar ciliate species, Euplotes petzi. To inquire whether Euplotes cells collected from distant Arctic and peri-Antarctic sites host Parafrancisella bacteria, wild-type strains of the congeneric bipolar species, E. nobilii, were screened for Parafrancisella by in situ hybridization and 16S gene amplification and sequencing. Results indicate that all Euplotes strains analyzed contained endosymbiotic bacteria with 16S nucleotide sequences closely similar to the P. adeliensis 16S gene sequence. This finding suggests that Parafrancisella/Euplotes associations are not endemic to Antarctica, but are common in both the Antarctic and Arctic regions.


Assuntos
Euplotes , Francisella , Filogenia , Euplotes/genética , Euplotes/microbiologia , Citoplasma , Regiões Antárticas
2.
J Eukaryot Microbiol ; 66(3): 376-384, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30076754

RESUMO

In Euplotes raikovi, we have determined the full-length sequences of a family of macronuclear genes that are the transcriptionally active versions of codominant alleles inherited at the mating-type (mat) locus of the micronuclear genome, and encode cell type-distinctive signaling pheromones. These genes include a 225-231-bp coding region flanked by a conserved 544-bp 5'-leader region and a more variable 3'-trailer region. Two transcription initiation start sites and two polyadenylation sites associated with nonconventional signals cooperate with a splicing phenomenon of a 326-bp intron residing in the 5'-leader region in the generation of multiple transcripts from the same gene. In two of them, the synthesis of functional products depends on the reassignment to a sense codon, or readthrough of a strictly conserved leaky UAG stop codon. That this reassignment may take place is suggested by the position this codon occupies in the transcripts, close to the transcript extremity and far from the poly(A) tail. In such a case, one product is a 69-amino acid protein in search of function and the second product is a 126-amino acid protein that represents a membrane-bound pheromone isoform candidate to function as a cell type-specific binding site (receptor) of the soluble pheromones.


Assuntos
Euplotes/genética , Expressão Gênica , Genes de Protozoários , Feromônios/genética , Sequência de Aminoácidos , Alinhamento de Sequência
3.
BMC Microbiol ; 14: 288, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25420622

RESUMO

BACKGROUND: Deleterious phenomena of protein oxidation affect every aerobic organism and methionine residues are their elective targets. The reduction of methionine sulfoxides back to methionines is catalyzed by methionine-sulfoxide reductases (Msrs), enzymes which are particularly active in microorganisms because of their unique nature of individual cells directly exposed to environmental oxidation. RESULTS: From the transcriptionally active somatic genome of a common free-living marine protist ciliate, Euplotes raikovi, we cloned multiple gene isoforms encoding Msr of type A (MsrA) committed to repair methionine-S-sulfoxides. One of these isoforms, in addition to including a MsrA-specific nucleotide sequence, included also a sequence specific for a Msr of type B (MsrB) committed to repair methionine-R-sulfoxides. Analyzed for its structural relationships with MsrA and MsrB coding sequences of other organisms, the coding region of this gene (named msrAB) showed much more significant relationships with Msr gene coding sequences of Rhodobacterales and Rhizobiales (Alphaproteobacteria), than of other eukaryotic organisms. CONCLUSIONS: Based on the fact that the msrAB gene is delimited by Euplotes-specific regulatory 5' and 3' regions and telomeric C4A4/G4T4 repeats, it was concluded that E. raikovi inherited the coding region of this gene through a phenomenon of horizontal gene transfer from species of Alphaproteobacteria with which it coexists in nature and on which it likely feeds.


Assuntos
Alphaproteobacteria/genética , Núcleo Celular/genética , Cilióforos/genética , Euplotes/genética , Metionina Sulfóxido Redutases/genética , Sequência de Aminoácidos , Sequência de Bases , Metionina/análogos & derivados , Metionina/genética , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Oxirredução , Isoformas de Proteínas/genética , Alinhamento de Sequência
4.
Int J Mol Sci ; 14(4): 7457-67, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23552830

RESUMO

In the protozoan ciliate Euplotes, a transduction pathway resulting in a mitogenic cell growth response is activated by autocrine receptor binding of cell type-specific, water-borne signaling protein pheromones. In Euplotes raikovi, a marine species of temperate waters, this transduction pathway was previously shown to involve the phosphorylation of a nuclear protein kinase structurally similar to the intestinal-cell and male germ cell-associated kinases described in mammals. In E. nobilii, which is phylogenetically closely related to E. raikovi but inhabits Antarctic and Arctic waters, we have now characterized a gene encoding a structurally homologous kinase. The expression of this gene requires +1 translational frameshifting and a process of intron splicing for the production of the active protein, designated En-MAPK1, which contains amino acid substitutions of potential significance for cold-adaptation.


Assuntos
Comunicação Autócrina/fisiologia , Euplotes , Regulação Enzimológica da Expressão Gênica/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno , Feromônios/metabolismo , Proteínas de Protozoários , Sequência de Aminoácidos , Clonagem Molecular , Euplotes/enzimologia , Euplotes/genética , Humanos , Masculino , Proteína Quinase 1 Ativada por Mitógeno/biossíntese , Proteína Quinase 1 Ativada por Mitógeno/genética , Dados de Sequência Molecular , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética
5.
Microorganisms ; 10(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35744607

RESUMO

In ciliates, diffusible cell type-specific pheromones regulate cell growth and mating phenomena acting competitively in both autocrine and heterologous fashion. In Euplotes species, these signaling molecules are represented by species-specific families of structurally homologous small, disulfide-rich proteins, each specified by one of a series of multiple alleles that are inherited without relationships of dominance at the mat-genetic locus of the germinal micronuclear genome, and expressed as individual gene-sized molecules in the somatic macronuclear genome. Here we report the 85-amino acid sequences and the full-length macronuclear nucleotide coding sequences of two pheromones, designated Ef-1 and Ef-2, isolated from the supernatant of a wild-type strain of a psychrophilic species of Euplotes, E. focardii, endemic to Antarctic coastal waters. An overall comparison of the determined E. focardii pheromone and pheromone-gene structures with their homologs from congeneric species provides an initial picture of how an evolutionary increase in the complexity of these structures accompanies Euplotes speciation.

6.
Front Cell Dev Biol ; 7: 244, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681773

RESUMO

In the ciliate Euplotes raikovi, a 631-amino acid Er-MAPK1 protein kinase was found to localize in nucleoli of the transcriptionally active nucleus (macronucleus) and act as a key component of an autocrine, cell-growth promoting self-signaling mechanism. While its 283-amino acid N-terminal domain includes all the structural specificities of the mitogen-activated protein kinases required for a catalytic function, the 348-amino acid C-terminal domain is structurally unique with undetermined functions. By expressing the two Er-MAPK1 domains tagged with the green fluorescent protein in mammalian fibroblasts, the yeast Schizosaccharomyces pombe and the ciliate Tetrahymena thermophila, evidence was obtained that the C-terminal domain contains all the sequence information responsible for the Er-MAPK1 subcellular localization. However, in fibroblasts and S. pombe this information determined a nucleolar localization of the GFP-tagged C-terminal domain, and a ciliary localization in T. thermophila. In the light of these findings, the Er-MAPK1 localization in E. raikovi was re-examined via immunoreactions and shown to be ciliary besides that nuclear, as is the case for the mammalian intestinal cell kinase with which the Er-MAPK1 N-terminal domain shares a strong sequence identity and a catalytic function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA