Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Am J Physiol Renal Physiol ; 321(3): F257-F268, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34251271

RESUMO

The epithelial Na+ channel (ENaC) constitutes the rate-limiting step for Na+ absorption in the aldosterone-sensitive distal nephron (ASDN) comprising the late distal convoluted tubule (DCT2), connecting tubule (CNT), and collecting duct (CD). Previously, we demonstrated that ENaC activity in the DCT2/CNT transition zone is constitutively high and independent of aldosterone, in contrast to its aldosterone dependence in the late CNT/initial cortical CD (CCD). The mineralocorticoid receptor (MR) is expressed in the entire ASDN. Its activation by glucocorticoids is prevented through 11ß-hydroxysteroid dehydrogenase 2 (11ß-HSD2) abundantly expressed in the late but probably not early part of the ASDN. We hypothesized that ENaC function in the early part of the ASDN is aldosterone independent but may depend on MR activated by glucocorticoids due to low 11ß-HSD2 abundance. To test this hypothesis, we used doxycycline-inducible nephron-specific MR-deficient [MR knockout (KO)] mice. Whole cell ENaC currents were investigated in isolated nephron fragments from the DCT2/CNT or CNT/CCD transition zones using the patch-clamp technique. ENaC activity was detectable in the CNT/CCD of control mice but absent or barely detectable in the majority of CNT/CCD preparations from MR KO mice. Importantly, ENaC currents in the DCT2/CNT were greatly reduced in MR KO mice compared with ENaC currents in the DCT2/CNT of control mice. Immunofluorescence for 11ß-HSD2 was abundant in the CCD, less prominent in the CNT, and very low in the DCT2. We conclude that MR is critically important for maintaining aldosterone-independent ENaC activity in the DCT2/CNT. Aldosterone-independent MR activation is probably mediated by glucocorticoids due to low expression of 11ß-HSD2.NEW & NOTEWORTHY Using a mouse model with inducible nephron-specific mineralocorticoid receptor (MR) deficiency, we demonstrated that MR is not only critical for maintaining aldosterone-dependent ENaC activity in CNT/CCD but also for aldosterone-independent ENaC activity in DCT2/CNT. Furthermore, we demonstrated that cells of this latter nephron segment express little 11ß-HSD2, which probably allows glucocorticoids to stimulate MR, resulting in aldosterone-independent ENaC activity in DCT2/CNT. This site-specific ENaC regulation has physiologically relevant implications for renal sodium and potassium homeostasis.


Assuntos
Aldosterona/farmacocinética , Túbulos Renais Coletores/metabolismo , Potássio/metabolismo , Receptores de Mineralocorticoides/efeitos dos fármacos , Receptores de Mineralocorticoides/metabolismo , Aldosterona/metabolismo , Animais , Canais Epiteliais de Sódio/metabolismo , Camundongos , Néfrons/metabolismo , Sódio/metabolismo , Sódio na Dieta/metabolismo
2.
Int J Mol Sci ; 22(17)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34502527

RESUMO

Glucocorticoids are amongst the most used drugs to treat retinal diseases of various origins. Yet, the transcriptional regulations induced by glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) activation in retinal pigment epithelium cells (RPE) that form the outer blood-retina barrier are unknown. Levels of endogenous corticoids, ligands for MR and GR, were measured in human ocular media. Human RPE cells derived from induced pluripotent stem cells (iRPE) were used to analyze the pan-transcriptional regulations induced by aldosterone-an MR-specific agonist, or cortisol or cortisol + RU486-a GR antagonist. The retinal phenotype of transgenic mice that overexpress the human MR (P1.hMR) was analyzed. In the human eye, the main ligand for GR and MR is cortisol. The iRPE cells express functional GR and MR. The subset of genes regulated by aldosterone and by cortisol + RU-486, and not by cortisol alone, mimics an imbalance toward MR activation. They are involved in extracellular matrix remodeling (CNN1, MGP, AMTN), epithelial-mesenchymal transition, RPE cell proliferation and migration (ITGB3, PLAUR and FOSL1) and immune balance (TNFSF18 and PTX3). The P1.hMR mice showed choroidal vasodilation, focal alteration of the RPE/choroid interface and migration of RPE cells together with RPE barrier function alteration, similar to human retinal diseases within the pachychoroid spectrum. RPE is a corticosteroid-sensitive epithelium. MR pathway activation in the RPE regulates genes involved in barrier function, extracellular matrix, neural regulation and epithelial differentiation, which could contribute to retinal pathology.


Assuntos
Aldosterona/metabolismo , Hidrocortisona/metabolismo , Células-Tronco Pluripotentes/metabolismo , Receptores de Mineralocorticoides/metabolismo , Doenças Retinianas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Transição Epitelial-Mesenquimal , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Camundongos , Camundongos Transgênicos , Células-Tronco Pluripotentes/patologia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/genética , Doenças Retinianas/genética , Doenças Retinianas/patologia , Epitélio Pigmentado da Retina/patologia
3.
Exp Eye Res ; 187: 107747, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31394103

RESUMO

Preclinical and clinical evidences show that aldosterone and/or mineralocorticoid receptor (MR) over-activation by glucocorticoids can be deleterious to the retina and to the retinal pigment epithelium (RPE)-choroid complex. However, the exact molecular mechanisms driving these effects remain poorly understood and pathological consequences of chronic exposure of the retina and RPE/choroid to aldosterone have not been completely explored. We aimed to decipher the transcriptomic regulation in the RPE-choroid complex in rats in response to acute intraocular aldosterone injection and to explore the consequences of systemic chronic aldosterone exposure on the morphology and the gene regulation in RPE/choroid in mice. High dose of aldosterone (100 nM) was intravitreously injected in Lewis rat eyes in order to yield an aldosterone dose able to induce a molecular response at the apical side of the RPE-choroid complex. The posterior segment morphology was evaluated in vivo using optical coherence tomography (OCT) before and 24 h after aldosterone injection. Rat RPE-choroid complexes were used for RNA sequencing and analysis. Uninephrectomy/aldosterone/salt (NAS) model was created in wild-type C57BL/6 mice. After 6 weeks, histology of mouse posterior segments were observed ex vivo. Gene expression in the RPE-choroid complex was analyzed using quantitative PCR. Acute intravitreous injection of aldosterone induced posterior segment inflammation observed on OCT. RNA sequencing of rat RPE-choroid complexes revealed up-regulation of pathways involved in inflammation, oxidative stress and RNA procession, and down-regulation of genes involved in synaptic activity, muscle contraction, cytoskeleton, cell junction and transporters. Chronic aldosterone/salt exposure in NAS model induces retinal edema, choroidal vasodilation and RPE cell dysfunction and migration. Quantitative PCR showed deregulation of genes involved in inflammatory response, oxidative stress, particularly the NOX pathway, angiogenesis and cell contractility. Both rodent models share some common phenotypes and molecular regulations in the RPE-choroid complex that could contribute to pachychoroid epitheliopathy in humans. The difference in inflammatory status relies on different intraocular or systemic route of aldosterone administration and on the different doses of aldosterone exposed to the RPE-choroid complex.


Assuntos
Aldosterona/farmacologia , Corioide/efeitos dos fármacos , Proteínas do Olho/genética , Regulação da Expressão Gênica/fisiologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Doença Aguda , Animais , Pressão Sanguínea/efeitos dos fármacos , Movimento Celular , Corioide/metabolismo , Corioide/patologia , Doenças da Coroide/induzido quimicamente , Doenças da Coroide/diagnóstico , Doença Crônica , Modelos Animais de Doenças , Injeções Intravítreas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nefrectomia , Papiledema/induzido quimicamente , Papiledema/diagnóstico , Ratos , Ratos Endogâmicos Lew , Reação em Cadeia da Polimerase em Tempo Real , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Análise de Sequência de RNA , Tomografia de Coerência Óptica
4.
Pflugers Arch ; 468(5): 895-908, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26762397

RESUMO

Aldosterone is the main mineralocorticoid hormone controlling sodium balance, fluid homeostasis, and blood pressure by regulating sodium reabsorption in the aldosterone-sensitive distal nephron (ASDN). Germline loss-of-function mutations of the mineralocorticoid receptor (MR) in humans and in mice lead to the "renal" form of type 1 pseudohypoaldosteronism (PHA-1), a case of aldosterone resistance characterized by salt wasting, dehydration, failure to thrive, hyperkalemia, and metabolic acidosis. To investigate the importance of MR in adult epithelial cells, we generated nephron-specific MR knockout mice (MR(Pax8/LC1)) using a doxycycline-inducible system. Under standard diet, MR(Pax8/LC1) mice exhibit inability to gain weight and significant weight loss compared to control mice. Interestingly, despite failure to thrive, MR(Pax8/LC1) mice survive but develop a severe PHA-1 phenotype with higher urinary Na(+) levels, decreased plasma Na(+), hyperkalemia, and higher levels of plasma aldosterone. This phenotype further worsens and becomes lethal under a sodium-deficient diet. Na(+)/Cl(-) co-transporter (NCC) protein expression and its phosphorylated form are downregulated in the MR(Pax8/LC1) knockouts, as well as the αENaC protein expression level, whereas the expression of glucocorticoid receptor (GR) is increased. A diet rich in Na(+) and low in K(+) does not restore plasma aldosterone to control levels but is sufficient to restore body weight, plasma, and urinary electrolytes. In conclusion, MR deletion along the nephron fully recapitulates the features of severe human PHA-1. ENaC protein expression is dependent on MR activity. Suppression of NCC under hyperkalemia predominates in a hypovolemic state.


Assuntos
Néfrons/metabolismo , Fenótipo , Pseudo-Hipoaldosteronismo/metabolismo , Receptores de Mineralocorticoides/deficiência , Aldosterona/sangue , Animais , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Deleção de Genes , Camundongos , Potássio/sangue , Potássio/urina , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/patologia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Sódio/sangue , Sódio/urina , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio/metabolismo , Redução de Peso
5.
Front Cell Neurosci ; 17: 1192464, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377777

RESUMO

Introduction: Clinical trials demonstrated that co-targeting angiopoietin-2 (Ang-2) and vascular endothelial growth factor (VEGF-A) with faricimab controls anatomic outcomes and maintains vision improvements, with strong durability, through 2 years in patients with neovascular age-related macular degeneration and diabetic macular edema. The mechanism(s) underlying these findings is incompletely understood and the specific role that Ang-2 inhibition plays requires further investigation. Methods: We examined the effects of single and dual Ang-2/VEGF-A inhibition in diseased vasculatures of JR5558 mice with spontaneous choroidal neovascularization (CNV) and in mice with retinal ischemia/reperfusion (I/R) injuries. Results: In JR5558 mice, Ang-2, VEGF-A, and dual Ang-2/VEGF-A inhibition reduced CNV area after 1 week; only dual Ang-2/VEGF-A inhibition decreased neovascular leakage. Only Ang-2 and dual Ang-2/VEGF-A inhibition maintained reductions after 5 weeks. Dual Ang-2/VEGF-A inhibition reduced macrophage/microglia accumulation around lesions after 1 week. Both Ang-2 and dual Ang-2/VEGF-A inhibition reduced macrophage/microglia accumulation around lesions after 5 weeks. In the retinal I/R injury model, dual Ang-2/VEGF-A inhibition was statistically significantly more effective than Ang-2 or VEGF-A inhibition alone in preventing retinal vascular leakage and neurodegeneration. Discussion: These data highlight the role of Ang-2 in dual Ang-2/VEGF-A inhibition and indicate that dual inhibition has complementary anti-inflammatory and neuroprotective effects, suggesting a mechanism for the durability and efficacy of faricimab in clinical trials.

6.
Methods Mol Biol ; 2475: 259-274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35451764

RESUMO

Difficulties with poor reproducibility and translatability of animal model-based research, along with increased efforts to abide by the 3Rs tenet of animal welfare, are driving demand for more relevant human cellular systems. This is especially true for central nervous system (CNS) vasculatures with specialized properties and barriers, namely the blood-brain and blood-retinal barriers (BBB and BRB, respectively) which are difficult to model in vitro. The BBB and BRB protect neurovascular units by regulating nutrient homeostasis, maintaining local ion levels, protecting against exposure from circulating toxins and pathogens, and restricting passage of peripheral immune factors. In this manuscript, we will describe transgenic and pharmacological-based protocols to generate relevant BBB and BRB models both from human pluripotent stem cell-derived endothelial cells (hPSC-ECs) and from primary human umbilical vein endothelial cells (HUVECs). When followed, researchers can expect to generate well-characterized, anatomical and functional BBB and BRB EC monolayers in 36-48 h that are stable up to 90 h. The ability to generate more relevant BBB and BRB EC cultures will improve drug discovery efforts and inform future therapies for neurovascular disorders.


Assuntos
Permeabilidade Capilar , Fator A de Crescimento do Endotélio Vascular , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematorretiniana/metabolismo , Permeabilidade Capilar/fisiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Reprodutibilidade dos Testes , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
J Clin Med ; 10(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34279457

RESUMO

The aim of this study was to evaluate the potential anti-angiogenic effect of MTRN (meteorin) in the laser-induced CNV rat model and explore its mechanisms of action. MTRN, thrompospondin-1, glial cell markers (GFAP, vimentin), and phalloidin were immuno-stained in non-human primate flat-mounted retinas and human retina cross sections. The effect of MTRN at different doses and time points was evaluated on laser-induced CNV at 14 days using in vivo fluorescein angiography and ex vivo quantification of CNV. A pan transcriptomic analysis of the retina and the RPE/choroid complex was used to explore MTRN effects mechanisms. In human retina, MTRN is enriched in the macula, expressed in and secreted by glial cells, and located in photoreceptor cells, including in nuclear bodies. Intravitreal MTRN administered preventively reduced CNV angiographic scores and CNV size in a dose-dependent manner. The highest dose, administered at day 7, also reduced CNV. MTRN, which is regulated by mineralocorticoid receptor modulators in the rat retina, regulates pathways associated with angiogenesis, oxidative stress, and neuroprotection. MTRN is a potential novel therapeutic candidate protein for wet AMD.

8.
Sci Rep ; 9(1): 19540, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863073

RESUMO

The kidney needs to adapt daily to variable dietary K+ contents via various mechanisms including diuretic, acid-base and hormonal changes that are still not fully understood. In this study, we demonstrate that following a K+-deficient diet in wildtype mice, the serine protease CAP2/Tmprss4 is upregulated in connecting tubule and cortical collecting duct and also localizes to the medulla and transitional epithelium of the papilla and minor calyx. Male CAP2/Tmprss4 knockout mice display altered water handling and urine osmolality, enhanced vasopressin response leading to upregulated adenylate cyclase 6 expression and cAMP overproduction, and subsequently greater aquaporin 2 (AQP2) and Na+-K+-2Cl- cotransporter 2 (NKCC2) expression following K+-deficient diet. Urinary acidification coincides with significantly increased H+,K+-ATPase type 2 (HKA2) mRNA and protein expression, and decreased calcium and phosphate excretion. This is accompanied by increased glucocorticoid receptor (GR) protein levels and reduced 11ß-hydroxysteroid dehydrogenase 2 activity in knockout mice. Strikingly, genetic nephron-specific deletion of GR leads to the mirrored phenotype of CAP2/Tmprss4 knockouts, including increased water intake and urine output, urinary alkalinisation, downregulation of HKA2, AQP2 and NKCC2. Collectively, our data unveil a novel role of the serine protease CAP2/Tmprss4 and GR on renal water handling upon dietary K+ depletion.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aquaporina 2/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Rim/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Potássio na Dieta/metabolismo , Receptores de Glucocorticoides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
9.
Sci Rep ; 9(1): 13873, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554875

RESUMO

Age Related Macular Degeneration (AMD) is the first cause of social blindness in people aged over 65 leading to atrophy of retinal pigment epithelial cells (RPE), photoreceptors and choroids, eventually associated with choroidal neovascularization. Accumulation of undigested cellular debris within RPE cells or under the RPE (Drusen), oxidative stress and inflammatory mediators contribute to the RPE cell death. The major risk to develop AMD is the Y402H polymorphism of complement factor H (CFH). CFH interacting with oxidized phospholipids on the RPE membrane modulates the functions of these cells, but the exact role of CFH in RPE cell death and survival remain poorly understood. The aim of this study was to analyze the potential protective mechanism of CFH on RPE cells submitted to oxidative stress. Upon exposure to oxidized lipids 4-HNE (4-hydroxy-2-nonenal) derived from photoreceptors, both the human RPE cell line ARPE-19 and RPE cells derived from human induced pluripotent stem cells were protected from death only in the presence of the full length human recombinant CFH in the culture medium. This protective effect was independent from the membrane attack complex (MAC) formation. CFH maintained RPE cells tight junctions' structure and regulated the caspase dependent apoptosis process. These results demonstrated the CFH anti-oxidative stress functions independently of its capacity to inhibit MAC formation.


Assuntos
Fator H do Complemento/farmacologia , Complexo de Ataque à Membrana do Sistema Complemento/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Aldeídos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microscopia Eletrônica de Transmissão , Estresse Oxidativo/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes , Epitélio Pigmentado da Retina/metabolismo , Junções Íntimas/efeitos dos fármacos
10.
Front Physiol ; 10: 989, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474871

RESUMO

Chronic glucocorticoid infusion impairs NCC activity and induces a non-dipping profile in mice, suggesting that glucocorticoids are essential for daily blood pressure variations. In this paper, we studied mice lacking the renal tubular glucocorticoid receptor (GR) in adulthood (GR knockouts, Nr3c1 Pax8/LC1 ). Upon standard salt diet, Nr3c1 Pax8/LC1 mice grow normally, but show reduced NCC activity despite normal plasma aldosterone levels. Following diet switch to low sodium, Nr3c1 Pax8/LC1 mice exhibit a transient but significant reduction in the activity of NCC and expression of NHE3 and NKCC2 accompanied by significant increased Spak activity. This is followed by transiently increased urinary sodium excretion and higher plasma aldosterone concentrations. Plasma corticosterone levels and 11ßHSD2 mRNA expression and activity in the whole kidney remain unchanged. High salt diet does not affect whole body Na+ and/or K+ balance and NCC activity is not reduced, but leads to a significant increase in diastolic blood pressure dipping in Nr3c1 Pax8/LC1 mice. When high sodium treatment is followed by 48 h of darkness, NCC abundance is reduced in knockout mice although activity is not different. Our data show that upon Na+ restriction renal tubular GR-deficiency transiently affects Na+ handling and transport pathways. Overall, upon standard, low Na+ and high Na+ diet exposure Na+ and K+ balance is maintained as evidenced by normal plasma and urinary Na+ and K+ and aldosterone concentrations.

11.
Nat Commun ; 10(1): 369, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30664640

RESUMO

Choroidal neovascularization (CNV) is a major cause of visual impairment in patients suffering from wet age-related macular degeneration (AMD), particularly when refractory to intraocular anti-VEGF injections. Here we report that treatment with the oral mineralocorticoid receptor (MR) antagonist spironolactone reduces signs of CNV in patients refractory to anti-VEGF treatment. In animal models of wet AMD, pharmacological inhibition of the MR pathway or endothelial-specific deletion of MR inhibits CNV through VEGF-independent mechanisms, in part through upregulation of the extracellular matrix protein decorin. Intravitreal injections of spironolactone-loaded microspheres and systemic delivery lead to similar reductions in CNV. Together, our work suggests MR inhibition as a novel therapeutic option for wet AMD patients unresponsive to anti-VEGF drugs.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neovascularização de Coroide/tratamento farmacológico , Degeneração Macular/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Receptores de Mineralocorticoides/genética , Espironolactona/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Animais , Corioide/efeitos dos fármacos , Corioide/metabolismo , Corioide/patologia , Neovascularização de Coroide/genética , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Composição de Medicamentos/métodos , Feminino , Expressão Gênica , Humanos , Injeções Intravítreas , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Camundongos , Camundongos Transgênicos , Microesferas , Projetos Piloto , Estudos Prospectivos , Ranibizumab/uso terapêutico , Ratos Long-Evans , Receptores de Mineralocorticoides/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA