Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 331: 117039, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36701888

RESUMO

Against a background of intensifying climate-induced disturbances, the need to enhance the resilience of forests and forest management is gaining urgency. In forest management, multiple trade-offs exist between different demands as well as across and within temporal and spatial scales. However, methods to assess resilience that consider these trade-offs are presently lacking. Here we propose a hierarchical framework of principles, criteria, and indicators to assess the resilience of a social-ecological system by focusing on the mechanisms behind resilience. This hierarchical framework balances trade-offs between mechanisms, different parts of the social-ecological system, ecosystem services, and spatial as well as temporal scales. The framework was developed to be used in a participatory manner in forest management planning. It accounts for the major parts of the forest-related social-ecological system and considers the multiple trade-offs involved. We demonstrate the utility of the framework by applying it to a landscape dominated by Norway spruce (Picea abies (L.) Karst.) in Central Europe, managed for three different management goals. The framework highlights how forest resilience varies with the pursued management goals and related management strategies. The framework is flexible and can be applied to various forest management contexts as part of a participatory process with stakeholders. It thus is an important step towards operationalizing social-ecological resilience in forest management systems.


Assuntos
Ecossistema , Florestas , Europa (Continente) , Noruega , Mudança Climática
2.
Ambio ; 53(8): 1095-1108, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38580897

RESUMO

The world is currently facing uncertainty caused by environmental, social, and economic changes and by political shocks. Fostering social-ecological resilience by enhancing forests' ability to provide a range of ecosystem services, including carbon sequestration, habitat provision, and sustainable livelihoods, is key to addressing such uncertainty. However, policy makers and managers currently lack a clear understanding of how to operationalise the shaping of resilience through the combined challenges of climate change, the biodiversity crisis, and changes in societal demand. Based on a scientific literature review, we identified a set of actions related to ecosystem services, biodiversity conservation, and disturbance and pressure impacts that forest managers and policy makers should attend to enhance the resilience of European forest systems. We conclude that the resilience shaping of forests should (1) adopt an operational approach, which is currently lacking, (2) identify and address existing and future trade-offs while reinforcing win-wins and (3) attend to local particularities through an adaptive management approach.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Florestas , Conservação dos Recursos Naturais/métodos , Agricultura Florestal/métodos , Ecossistema , Sequestro de Carbono , Europa (Continente)
3.
Proc Natl Acad Sci U S A ; 107(50): 21925-30, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21106761

RESUMO

Although ecological restoration is widely used to combat environmental degradation, very few studies have evaluated the cost-effectiveness of this approach. We examine the potential impact of forest restoration on the value of multiple ecosystem services across four dryland areas in Latin America, by estimating the net value of ecosystem service benefits under different reforestation scenarios. The values of selected ecosystem services were mapped under each scenario, supported by the use of a spatially explicit model of forest dynamics. We explored the economic potential of a change in land use from livestock grazing to restored native forest using different discount rates and performed a cost-benefit analysis of three restoration scenarios. Results show that passive restoration is cost-effective for all study areas on the basis of the services analyzed, whereas the benefits from active restoration are generally outweighed by the relatively high costs involved. These findings were found to be relatively insensitive to discount rate but were sensitive to the market value of carbon. Substantial variation in values was recorded between study areas, demonstrating that ecosystem service values are strongly context specific. However, spatial analysis enabled localized areas of net benefits to be identified, indicating the value of this approach for identifying the relative costs and benefits of restoration interventions across a landscape.


Assuntos
Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Análise Custo-Benefício/economia , Ecossistema , Árvores , Animais , Carbono/metabolismo , Humanos , América Latina , Gado , Modelos Biológicos
4.
Naturwissenschaften ; 97(3): 265-71, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20033123

RESUMO

Recent large-scale studies have shown that biodiversity-rich regions also tend to be densely populated areas. The most obvious explanation is that biodiversity and human beings tend to match the distribution of energy availability, environmental stability and/or habitat heterogeneity. However, the species-people correlation can also be an artefact, as more populated regions could show more species because of a more thorough sampling. Few studies have tested this sampling bias hypothesis. Using a newly collated dataset, we studied whether Orthoptera species richness is related to human population size in Italy's regions (average area 15,000 km(2)) and provinces (2,900 km(2)). As expected, the observed number of species increases significantly with increasing human population size for both grain sizes, although the proportion of variance explained is minimal at the provincial level. However, variations in observed Orthoptera species richness are primarily associated with the available number of records, which is in turn well correlated with human population size (at least at the regional level). Estimated Orthoptera species richness (Chao2 and Jackknife) also increases with human population size both for regions and provinces. Both for regions and provinces, this increase is not significant when controlling for variation in area and number of records. Our study confirms the hypothesis that broad-scale human population-biodiversity correlations can in some cases be artefactual. More systematic sampling of less studied taxa such as invertebrates is necessary to ascertain whether biogeographical patterns persist when sampling effort is kept constant or included in models.


Assuntos
Ortópteros/classificação , Densidade Demográfica , Animais , Biologia , Ecossistema , Geografia , Humanos , Itália , Museus , Estudos de Amostragem
5.
PLoS One ; 12(12): e0189578, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29240842

RESUMO

Positive feedbacks in drivers of degradation can cause threshold responses in natural ecosystems. Though threshold responses have received much attention in studies of aquatic ecosystems, they have been neglected in terrestrial systems, such as forests, where the long time-scales required for monitoring have impeded research. In this study we explored the role of positive feedbacks in a temperate forest that has been monitored for 50 years and is undergoing dieback, largely as a result of death of the canopy dominant species (Fagus sylvatica, beech). Statistical analyses showed strong non-linear losses in basal area for some plots, while others showed relatively gradual change. Beech seedling density was positively related to canopy openness, but a similar relationship was not observed for saplings, suggesting a feedback whereby mortality in areas with high canopy openness was elevated. We combined this observation with empirical data on size- and growth-mediated mortality of trees to produce an individual-based model of forest dynamics. We used this model to simulate changes in the structure of the forest over 100 years under scenarios with different juvenile and mature mortality probabilities, as well as a positive feedback between seedling and mature tree mortality. This model produced declines in forest basal area when critical juvenile and mature mortality probabilities were exceeded. Feedbacks in juvenile mortality caused a greater reduction in basal area relative to scenarios with no feedback. Non-linear, concave declines of basal area occurred only when mature tree mortality was 3-5 times higher than rates observed in the field. Our results indicate that the longevity of trees may help to buffer forests against environmental change and that the maintenance of old, large trees may aid the resilience of forest stands. In addition, our work suggests that dieback of forests may be avoidable providing pressures on mature and juvenile trees do not pass critical thresholds.


Assuntos
Clima , Ecossistema , Florestas , Biodiversidade , Pesquisa Empírica , Modelos Teóricos , Análise de Regressão
6.
Ecol Evol ; 7(22): 9661-9675, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29187998

RESUMO

Resilience is increasingly being considered as a new paradigm of forest management among scientists, practitioners, and policymakers. However, metrics of resilience to environmental change are lacking. Faced with novel disturbances, forests may be able to sustain existing ecosystem services and biodiversity by exhibiting resilience, or alternatively these attributes may undergo either a linear or nonlinear decline. Here we provide a novel quantitative approach for assessing forest resilience that focuses on three components of resilience, namely resistance, recovery, and net change, using a spatially explicit model of forest dynamics. Under the pulse set scenarios, we explored the resilience of nine ecosystem services and four biodiversity measures following a one-off disturbance applied to an increasing percentage of forest area. Under the pulse + press set scenarios, the six disturbance intensities explored during the pulse set were followed by a continuous disturbance. We detected thresholds in net change under pulse + press scenarios for the majority of the ecosystem services and biodiversity measures, which started to decline sharply when disturbance affected >40% of the landscape. Thresholds in net change were not observed under the pulse scenarios, with the exception of timber volume and ground flora species richness. Thresholds were most pronounced for aboveground biomass, timber volume with respect to the ecosystem services, and ectomycorrhizal fungi and ground flora species richness with respect to the biodiversity measures. Synthesis and applications. The approach presented here illustrates how the multidimensionality of stability research in ecology can be addressed and how forest resilience can be estimated in practice. Managers should adopt specific management actions to support each of the three components of resilience separately, as these may respond differently to disturbance. In addition, management interventions aiming to deliver resilience should incorporate an assessment of both pulse and press disturbances to ensure detection of threshold responses to disturbance, so that appropriate management interventions can be identified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA