Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Math Biol ; 85(1): 6, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35796836

RESUMO

In this paper, we use an integrodifference equation model and pairwise invasion analysis to find what dispersal strategies are evolutionarily stable strategies (also known as evolutionarily steady or ESS) when there is spatial heterogeneity and possibly seasonal variation in habitat suitability. In that case there are both advantages and disadvantages of dispersing. We begin with the case where all spatial locations can support a viable population, and then consider the case where there are non-viable regions in the habitat. If the viable regions vary seasonally, and the viable regions in summer and winter do not overlap, dispersal may really be necessary for sustaining a population. Our findings generally align with previous findings in the literature that were based on other modeling frameworks, namely that dispersal strategies associated with ideal free distributions are evolutionarily stable. In the case where only part of the habitat can sustain a population, we show that a partial occupation ideal free distribution that occupies only the viable region is associated with a dispersal strategy that is evolutionarily stable. As in some previous works, the proofs of these results make use of properties of line sum symmetric functions, which are analogous to those of line sum symmetric matrices but applied to integral operators.


Assuntos
Evolução Biológica , Modelos Biológicos , Ecossistema , Dinâmica Populacional , Estações do Ano
2.
J Math Biol ; 80(1-2): 3-37, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30392106

RESUMO

We study the evolutionary stability of dispersal strategies, including but not limited to those that can produce ideal free population distributions (that is, distributions where all individuals have equal fitness and there is no net movement of individuals at equilibrium). The environment is assumed to be variable in space but constant in time. We assume that there is a separation of times scales, so that dispersal occurs on a fast timescale, evolution occurs on a slow timescale, and population dynamics and interactions occur on an intermediate timescale. Starting with advection-diffusion models for dispersal without population dynamics, we use the large time limits of profiles for population distributions together with the distribution of resources in the environment to calculate growth and interaction coefficients in logistic and Lotka-Volterra ordinary differential equations describing population dynamics. We then use a pairwise invasibility analysis approach motivated by adaptive dynamics to study the evolutionary and/or convergence stability of strategies determined by various assumptions about the advection and diffusion terms in the original advection-diffusion dispersal models. Among other results we find that those strategies which can produce an ideal free distribution are evolutionarily stable.


Assuntos
Evolução Biológica , Modelos Biológicos , Análise Espaço-Temporal , Animais , Dinâmica Populacional/estatística & dados numéricos , Dinâmica Populacional/tendências , Fatores de Tempo
3.
J Math Biol ; 80(1-2): 61-92, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30783745

RESUMO

Many types of organisms disperse through heterogeneous environments as part of their life histories. For various models of dispersal, including reaction-advection-diffusion models in continuously varying environments, it has been shown by pairwise invasibility analysis that dispersal strategies which generate an ideal free distribution are evolutionarily steady strategies (ESS, also known as evolutionarily stable strategies) and are neighborhood invader strategies (NIS). That is, populations using such strategies can both invade and resist invasion by populations using strategies that do not produce an ideal free distribution. (The ideal free distribution arises from the assumption that organisms inhabiting heterogeneous environments should move to maximize their fitness, which allows a mathematical characterization in terms of fitness equalization.) Classical reaction diffusion models assume that landscapes vary continuously. Landscape ecologists consider landscapes as mosaics of patches where individuals can make movement decisions at sharp interfaces between patches of different quality. We use a recent formulation of reaction-diffusion systems in patchy landscapes to study dispersal strategies by using methods inspired by evolutionary game theory and adaptive dynamics. Specifically, we use a version of pairwise invasibility analysis to show that in patchy environments, the behavioral strategy for movement at boundaries between different patch types that generates an ideal free distribution is both globally evolutionarily steady (ESS) and is a global neighborhood invader strategy (NIS).


Assuntos
Evolução Biológica , Modelos Biológicos , Adaptação Fisiológica , Animais , Ecossistema , Teoria dos Jogos , Movimento , Dinâmica Populacional
4.
J Theor Biol ; 455: 342-356, 2018 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-30053386

RESUMO

Chikungunya, dengue, and Zika viruses are all transmitted by Aedes aegypti and Aedes albopictus mosquito species, had been imported to Florida and caused local outbreaks. We propose a deterministic model to study the importation and local transmission of these mosquito-borne diseases. The purpose is to model and mimic the importation of these viruses to Florida via travelers, local infections in domestic mosquitoes by imported travelers, and finally non-travel related transmissions to local humans by infected local mosquitoes. As a case study, the model will be used to simulate the accumulative Zika cases in Florida. Since the disease system is driven by a continuing input of infections from outside sources, orthodox analytic methods based on the calculation of the basic reproduction number are inadequate to describe and predict their behavior. Via steady-state analysis and sensitivity analysis, effective control and prevention measures for these mosquito-borne diseases are tested.


Assuntos
Aedes/virologia , Surtos de Doenças , Modelos Biológicos , Mosquitos Vetores/virologia , Infecção por Zika virus , Zika virus , Animais , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/transmissão , Vírus Chikungunya , Dengue/epidemiologia , Dengue/transmissão , Vírus da Dengue , Florida/epidemiologia , Humanos , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão
5.
Am Nat ; 189(5): 474-489, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28410028

RESUMO

How organisms gather and utilize information about their landscapes is central to understanding land-use patterns and population distributions. When such information originates beyond an individual's immediate vicinity, movement decisions require integrating information out to some perceptual range. Such nonlocal information, whether obtained visually, acoustically, or via chemosensation, provides a field of stimuli that guides movement. Classically, however, models have assumed movement based on purely local information (e.g., chemotaxis, step-selection functions). Here we explore how foragers can exploit nonlocal information to improve their success in dynamic landscapes. Using a continuous time/continuous space model in which we vary both random (diffusive) movement and resource-following (advective) movement, we characterize the optimal perceptual ranges for foragers in dynamic landscapes. Nonlocal information can be highly beneficial, increasing the spatiotemporal concentration of foragers on their resources up to twofold compared with movement based on purely local information. However, nonlocal information is most useful when foragers possess both high advective movement (allowing them to react to transient resources) and low diffusive movement (preventing them from drifting away from resource peaks). Nonlocal information is particularly beneficial in landscapes with sharp (rather than gradual) patch edges and in landscapes with highly transient resources.


Assuntos
Ecossistema , Comportamento Alimentar , Movimento , Percepção , Distribuição Animal , Animais , Modelos Biológicos
6.
Bull Math Biol ; 76(8): 2052-72, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25102776

RESUMO

We propose a mathematical model to investigate the transmission dynamics of Rift Valley fever (RVF) virus among ruminants. Our findings indicate that in endemic areas RVF virus maintains at a very low level among ruminants after outbreaks and subsequent outbreaks may occur when new susceptible ruminants are recruited into endemic areas or abundant numbers of mosquitoes emerge when herd immunity decreases. Many factors have been shown to have impacts on the severity of RVF outbreaks; a higher probability of death due to RVF among ruminants, a higher mosquito:ruminant ratio, or a shorter lifespan of animals can amplify the magnitude of the outbreaks; vaccination helps to reduce the magnitude of RVF outbreaks and the loss of animals efficiently, and the maximum vaccination effort (a high vaccination rate and a larger number of vaccinated animals) is recommended before the commencement of an outbreak but can be reduced later during the enzootic.


Assuntos
Surtos de Doenças/veterinária , Modelos Imunológicos , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/imunologia , Ruminantes/virologia , Zoonoses/virologia , Animais , Simulação por Computador , Culicidae/virologia , Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/virologia , Ruminantes/imunologia , Vacinação/veterinária , Zoonoses/epidemiologia , Zoonoses/imunologia , Zoonoses/transmissão
7.
Bull Math Biol ; 75(3): 523-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23377629

RESUMO

Rift Valley fever (RVF) is a severe viral zoonosis in Africa and the Middle East that harms both human health and livestock production. It is believed that RVF in Egypt has been repeatedly introduced by the importation of infected animals from Sudan. In this paper, we propose a three-patch model for the process by which animals enter Egypt from Sudan, are moved up the Nile, and then consumed at population centers. The basic reproduction number for each patch is introduced and then the threshold dynamics of the model are established. We simulate an interesting scenario showing a possible explanation of the observed phenomenon of the geographic spread of RVF in Egypt.


Assuntos
Culicidae/virologia , Epidemias/veterinária , Modelos Biológicos , Febre do Vale de Rift/epidemiologia , Vírus da Febre do Vale do Rift/isolamento & purificação , Zoonoses/epidemiologia , Animais , Número Básico de Reprodução/veterinária , Simulação por Computador , Egito/epidemiologia , Humanos , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/imunologia , Sudão , Zoonoses/imunologia , Zoonoses/transmissão , Zoonoses/virologia
8.
Acta Trop ; 239: 106837, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36657506

RESUMO

Aedes aegypti is one of the most dominant mosquito species in the urban areas of Miami-Dade County, Florida, and is responsible for the local arbovirus transmissions. Since August 2016, mosquito traps have been placed throughout the county to improve surveillance and guide mosquito control and arbovirus outbreak response. In this paper, we develop a deterministic mosquito population model, estimate model parameters by using local entomological and temperature data, and use the model to calibrate the mosquito trap data from 2017 to 2019. We further use the model to compare the Ae. aegypti population and evaluate the impact of rainfall intensity in different urban built environments. Our results show that rainfall affects the breeding sites and the abundance of Ae. aegypti more significantly in tourist areas than in residential places. In addition, we apply the model to quantitatively assess the effectiveness of vector control strategies in Miami-Dade County.


Assuntos
Aedes , Arbovírus , Animais , Mosquitos Vetores , Controle de Mosquitos/métodos , Modelos Teóricos , Proliferação de Células
9.
J Math Biol ; 65(5): 943-65, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22048260

RESUMO

A central question in the study of the evolution of dispersal is what kind of dispersal strategies are evolutionarily stable. Hastings (Theor Pop Biol 24:244-251, 1983) showed that among unconditional dispersal strategies in a spatially heterogeneous but temporally constant environment, the dispersal strategy with no movement is convergent stable. McPeek and Holt's (Am Nat 140:1010-1027, 1992) work suggested that among conditional dispersal strategies in a spatially heterogeneous but temporally constant environment, an ideal free dispersal strategy, which results in the ideal free distribution for a single species at equilibrium, is evolutionarily stable. We use continuous-time and discrete-space models to determine when the dispersal strategy with no movement is evolutionarily stable and when an ideal free dispersal strategy is evolutionarily stable, both in a spatially heterogeneous but temporally constant environment.


Assuntos
Ecossistema , Modelos Biológicos , Animais , Evolução Biológica , Dinâmica Populacional
10.
AoB Plants ; 12(2): plz048, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32346468

RESUMO

Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant's life history and environmental variability that ultimately influences a population's ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity.

11.
Am Nat ; 173(3): 363-75, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19159262

RESUMO

How biological processes such as reproduction and dispersal relate to the size of species' geographic ranges constitutes a major challenge in spatial ecology and biogeography. Here we develop a spatially explicit theoretical framework that links fundamental population-level ecological traits (e.g., rates of dispersal and population growth or decay) with landscape heterogeneity to derive estimates of species' geographic range sizes and, further, distributions of geographic range sizes across species. Although local (patch-scale) population dynamics in this model are completely deterministic, we consider a fragmented landscape of patches and gaps in which the spatial heterogeneity is itself stochastic. This stochastic spatial structure, which juxtaposes landscape-level patch and gap characteristics against population-level critical patch sizes and maximum gap-crossing abilities, determines how far a novel species can spread from its evolutionary origin. Given reasonable assumptions about landscape structure and about the distribution of critical patch sizes and critical gap lengths among species, we obtain distributions of geographic range sizes that are qualitatively similar to those routinely found in nature (e.g., many species with small geographic ranges). Collectively, our results suggest that both interspecific differences in population-level traits and the landscapes through which species spread help determine patterns of occupancy and geographic extent.


Assuntos
Densidade Demográfica , Dinâmica Populacional , Animais , Ecossistema , Geografia , Matemática , Modelos Biológicos , Crescimento Demográfico
12.
AoB Plants ; 11(3): plz020, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31198528

RESUMO

When climatic or environmental conditions change, plant populations must either adapt to these new conditions, or track their niche via seed dispersal. Adaptation of plants to different abiotic environments has mostly been discussed with respect to physiological and demographic parameters that allow local persistence. However, rapid modifications in response to changing environmental conditions can also affect seed dispersal, both via plant traits and via their dispersal agents. Studying such changes empirically is challenging, due to the high variability in dispersal success, resulting from environmental heterogeneity, and substantial phenotypic variability of dispersal-related traits of seeds and their dispersers. The exact mechanisms that drive rapid changes are often not well understood, but the ecological implications of these processes are essential determinants of dispersal success, and deserve more attention from ecologists, especially in the context of adaptation to global change. We outline the evidence for rapid changes in seed dispersal traits by discussing variability due to plasticity or genetics broadly, and describe the specific traits and biological systems in which variability in dispersal is being studied, before discussing some of the potential underlying mechanisms. We then address future research needs and propose a simulation model that incorporates phenotypic plasticity in seed dispersal. We close with a call to action and encourage ecologists and biologist to embrace the challenge of better understanding rapid changes in seed dispersal and their consequences for the reaction of plant populations to global change.

13.
AoB Plants ; 11(5): plz042, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31579119

RESUMO

The distribution and abundance of plants across the world depends in part on their ability to move, which is commonly characterized by a dispersal kernel. For seeds, the total dispersal kernel (TDK) describes the combined influence of all primary, secondary and higher-order dispersal vectors on the overall dispersal kernel for a plant individual, population, species or community. Understanding the role of each vector within the TDK, and their combined influence on the TDK, is critically important for being able to predict plant responses to a changing biotic or abiotic environment. In addition, fully characterizing the TDK by including all vectors may affect predictions of population spread. Here, we review existing research on the TDK and discuss advances in empirical, conceptual modelling and statistical approaches that will facilitate broader application. The concept is simple, but few examples of well-characterized TDKs exist. We find that significant empirical challenges exist, as many studies do not account for all dispersal vectors (e.g. gravity, higher-order dispersal vectors), inadequately measure or estimate long-distance dispersal resulting from multiple vectors and/or neglect spatial heterogeneity and context dependence. Existing mathematical and conceptual modelling approaches and statistical methods allow fitting individual dispersal kernels and combining them to form a TDK; these will perform best if robust prior information is available. We recommend a modelling cycle to parameterize TDKs, where empirical data inform models, which in turn inform additional data collection. Finally, we recommend that the TDK concept be extended to account for not only where seeds land, but also how that location affects the likelihood of establishing and producing a reproductive adult, i.e. the total effective dispersal kernel.

14.
AoB Plants ; 11(2): plz006, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30895154

RESUMO

Seed dispersal enables plants to reach hospitable germination sites and escape natural enemies. Understanding when and how much seed dispersal matters to plant fitness is critical for understanding plant population and community dynamics. At the same time, the complexity of factors that determine if a seed will be successfully dispersed and subsequently develop into a reproductive plant is daunting. Quantifying all factors that may influence seed dispersal effectiveness for any potential seed-vector relationship would require an unrealistically large amount of time, materials and financial resources. On the other hand, being able to make dispersal predictions is critical for predicting whether single species and entire ecosystems will be resilient to global change. Building on current frameworks, we here posit that seed dispersal ecology should adopt plant functional groups as analytical units to reduce this complexity to manageable levels. Functional groups can be used to distinguish, for their constituent species, whether it matters (i) if seeds are dispersed, (ii) into what context they are dispersed and (iii) what vectors disperse them. To avoid overgeneralization, we propose that the utility of these functional groups may be assessed by generating predictions based on the groups and then testing those predictions against species-specific data. We suggest that data collection and analysis can then be guided by robust functional group definitions. Generalizing across similar species in this way could help us to better understand the population and community dynamics of plants and tackle the complexity of seed dispersal as well as its disruption.

15.
Math Biosci ; 305: 71-76, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30193955

RESUMO

Roughly speaking, a population is said to have an ideal free distribution on a spatial region if all of its members can and do locate themselves in a way that optimizes their fitness, allowing for the effects of crowding. Dispersal strategies that can lead to ideal free distributions of populations using them have been shown to exist and to be evolutionarily stable in a number of modeling contexts in the case of habitats that vary in space but not in time. Those modeling contexts include reaction-diffusion-advection models and the analogous models using discrete diffusion or nonlocal dispersal described by integro-differential equations. Furthermore, in the case of reaction-diffusion-advection models and their nonlocal analogues, there are strategies that allow populations to achieve an ideal free distribution by using only local information about environmental quality and/or gradients. We show that in the context of reaction-diffusion-advection models for time-periodic environments with spatially varying resource levels, where the total level of resources in an environment remains fixed but its location varies seasonally, there are strategies that allow populations to achieve an ideal free distribution. We also show that those strategies are evolutionarily stable. However, achieving an ideal free distribution in a time-periodic environment requires the use of nonlocal information about the environment such as might be derived from experience and memory, social learning, or genetic programming.


Assuntos
Distribuição Animal , Evolução Biológica , Modelos Biológicos , Animais , Ecossistema , Aptidão Genética , Conceitos Matemáticos , Periodicidade , Dinâmica Populacional/estatística & dados numéricos
16.
J Biol Dyn ; 12(1): 288-317, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29527959

RESUMO

Most classical models for the movement of organisms assume that all individuals have the same patterns and rates of movement (for example, diffusion with a fixed diffusion coefficient) but there is empirical evidence that movement rates and patterns may vary among different individuals. A simple way to capture variation in dispersal that has been suggested in the ecological literature is to allow individuals to switch between two distinct dispersal modes. We study models for populations whose members can switch between two different nonzero rates of diffusion and whose local population dynamics are subject to density dependence of logistic type. The resulting models are reaction-diffusion systems that can be cooperative at some population densities and competitive at others. We assume that the focal population inhabits a bounded region and study how its overall dynamics depend on the parameters describing switching rates and local population dynamics. (Traveling waves and spread rates have been studied for similar models in the context of biological invasions.) The analytic methods include ideas and results from reaction-diffusion theory, semi-dynamical systems, and bifurcation/continuation theory.


Assuntos
Ecossistema , Movimento , Dinâmica Populacional , Animais , Difusão , Humanos , Modelos Biológicos
17.
Math Biosci Eng ; 14(4): 953-973, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28608705

RESUMO

In this paper we employ a discrete-diffusion modeling framework to examine a system inspired by the nano-ecology experiments on the bacterium Escherichia coli reported upon in Keymer et al. (2006). In these experiments, the bacteria inhabit a linear array of 85 ``microhabitat patches (MHP's)", linked by comparatively thinner corridors through which bacteria may pass between adjacent MHP's. Each MHP is connected to its own source of nutrient substrate, which flows into the MHP at a rate that can be controlled in the experiment. Logistic dynamics are assumed within each MHP, and nutrient substrate flow determines the prediction of the within MHP dynamics in the absence of bacteria dispersal between patches. Patches where the substrate flow rate is sufficiently high sustain the bacteria in the absence of between patch movement and may be regarded as sources, while those with insufficient substrate flow lead to the extinction of the bacteria in the within patch environment and may be regarded as sinks. We examine the role of dispersal in determining the predictions of the model under source-sink dynamics.


Assuntos
Fenômenos Fisiológicos Bacterianos , Ecossistema , Modelos Biológicos , Dinâmica Populacional
18.
Math Biosci ; 283: 136-144, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27840280

RESUMO

Understanding the evolution of dispersal is an important issue in evolutionary ecology. For continuous time models in which individuals disperse throughout their lifetime, it has been shown that a balanced dispersal strategy, which results in an ideal free distribution, is evolutionary stable in spatially varying but temporally constant environments. Many species, however, primarily disperse prior to reproduction (natal dispersal) and less commonly between reproductive events (breeding dispersal). These species include territorial species such as birds and reef fish, and sessile species such as plants, and mollusks. As demographic and dispersal terms combine in a multiplicative way for models of natal dispersal, rather than the additive way for the previously studied models, we develop new mathematical methods to study the evolution of natal dispersal for continuous-time and discrete-time models. A fundamental ecological dichotomy is identified for the non-trivial equilibrium of these models: (i) the per-capita growth rates for individuals in all patches are equal to zero, or (ii) individuals in some patches experience negative per-capita growth rates, while individuals in other patches experience positive per-capita growth rates. The first possibility corresponds to an ideal-free distribution, while the second possibility corresponds to a "source-sink" spatial structure. We prove that populations with a dispersal strategy leading to an ideal-free distribution displace populations with dispersal strategy leading to a source-sink spatial structure. When there are patches which cannot sustain a population, ideal-free strategies can be achieved by sedentary populations, and we show that these populations can displace populations with any irreducible dispersal strategy. Collectively, these results support that evolution selects for natal or breeding dispersal strategies which lead to ideal-free distributions in spatially heterogenous, but temporally homogenous, environments.


Assuntos
Evolução Biológica , Ecossistema , Modelos Teóricos , Animais
19.
Math Biosci ; 204(2): 199-214, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17070869

RESUMO

We study a reaction-diffusion-advection model for two ecologically equivalent competitors with different dispersal strategies inhabiting a spatially heterogeneous environment. The competitors represent different phenotypes of the same species. One is assumed to disperse by simple diffusion, the other by diffusion together with directed movement toward more favorable environments. We show that under suitable conditions on the underlying spatial domain, the competitor that moves toward more favorable environments may have a competitive advantage even if it diffuses more rapidly than the other competitor. This is in contrast with the case in which both competitors disperse by pure diffusion, where the competitor that diffuses more slowly always has the advantage. We determine competitive advantage by examining the invasibility, i.e. stability or instability, of steady states with only one competitor present. The mathematical approach is a perturbation analysis of principal eigenvalues.


Assuntos
Evolução Biológica , Ecossistema , Meio Ambiente , Modelos Biológicos , Algoritmos , Animais , Comportamento Competitivo , Densidade Demográfica , Dinâmica Populacional , Crescimento Demográfico
20.
PLoS Negl Trop Dis ; 9(1): e3388, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569474

RESUMO

Rift Valley fever (RVF) is an important mosquito-borne viral zoonosis in Africa and the Middle East that causes human deaths and significant economic losses due to huge incidences of death and abortion among infected livestock. Outbreaks of RVF are sporadic and associated with both seasonal and socioeconomic effects. Here we propose an almost periodic three-patch model to investigate the transmission dynamics of RVF virus (RVFV) among ruminants with spatial movements. Our findings indicate that, in Northeastern Africa, human activities, including those associated with the Eid al Adha feast, along with a combination of climatic factors such as rainfall level and hydrological variations, contribute to the transmission and dispersal of the disease pathogen. Moreover, sporadic outbreaks may occur when the two events occur together: 1) abundant livestock are recruited into areas at risk from RVF due to the demand for the religious festival and 2) abundant numbers of mosquitoes emerge. These two factors have been shown to have impacts on the severity of RVF outbreaks. Our numerical results present the transmission dynamics of the disease pathogen over both short and long periods of time, particularly during the festival time. Further, we investigate the impact on patterns of disease outbreaks in each patch brought by festival- and seasonal-driven factors, such as the number of livestock imported daily, the animal transportation speed from patch to patch, and the death rate induced by ceremonial sacrifices. In addition, our simulations show that when the time for festival preparation starts earlier than usual, the risk of massive disease outbreaks rises, particularly in patch 3 (the place where the religious ceremony will be held).


Assuntos
Modelos Biológicos , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/fisiologia , Estações do Ano , África/epidemiologia , Animais , Culicidae , Surtos de Doenças/veterinária , Feminino , Humanos , Gado , Periodicidade , Dinâmica Populacional , Febre do Vale de Rift/economia , Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/virologia , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA