Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Toxicol Environ Health A ; 75(18): 1120-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22891885

RESUMO

Radiofrequency fields (RF) at 1800 MHz are known to affect melatonin (MEL) and testosterone in male rats, but it remains to be determined whether RF affected circadian rhythm of these plasma hormones. Male Sprague-Dawley rats were exposed to 1800-MHz RF at 208 µw/cm² power density (SAR: 0.5762 W/kg) at different zeitgeber (ZT) periods of the day, including 0 (ZT0), 4 (ZT4), 8 (ZT8), 12 (ZT12), 16 (ZT16), and 20 (ZT20) h. RF exposure was 2 h/d for 32 d. From each rat, the concentrations of plasma MEL and testosterone were determined in plasma after RF exposure and compared with controls. The results confirmed the existence of circadian rhythms in the synthesis of MEL and testosterone, but revealed an inverse relationship in peak phase of these rhythms. These rhythms were disturbed after exposure to RF, with the effect being more pronounced on MEL than testosterone. The most pronounced effect of RF exposure on MEL and testosterone appears to be in rats exposed to RF at ZT 16 and ZT0 h, respectively. Data suggest that regulation of testosterone is controlled by MEL and that MEL is more sensitive to RF exposure.


Assuntos
Ritmo Circadiano/efeitos da radiação , Melatonina/sangue , Ondas de Rádio/efeitos adversos , Testosterona/sangue , Irradiação Corporal Total/efeitos adversos , Algoritmos , Animais , Cinética , Masculino , Melatonina/metabolismo , Glândula Pineal/metabolismo , Glândula Pineal/efeitos da radiação , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Testículo/metabolismo , Testículo/efeitos da radiação , Testosterona/metabolismo
2.
Chronobiol Int ; 38(12): 1745-1760, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34369206

RESUMO

In this paper, the chronotoxicity of radiofrequency fields (RF) in the pubertal testis development and the involved molecular pathways were investigated by exposing four-week-old mice to RF (1800 MHz, SAR, 0.50 W/kg) in the morning and evening of each day for three weeks. Then, pathological changes and functional indices within the testis were determined. We also used a long non-coding RNA (lncRNA) microarray and GO/KEGG pathway analyses to determine lncRNA expression profiles and predict their potential functions. The cis and trans regulation of lncRNAs were investigated, and an interaction network was constructed using Cytoscape software. RF exposure led to a range of pathological changes in the testes of adolescent mice, as testicular weights and daily sperm productions decreased, and the testosterone secretion reduced. Furthermore, RF induced dysregulation in the expression of testicular lncRNAs. We identified 615 and 183 differentially expressed lncRNAs that were associated with morning and evening exposure to RF, respectively. From 15 differential expression lncRNAs both in morning RF group and evening RF group, we selected 6 lncRNAs to be validated by quantitative reverse transcription PCR (qRT-PCR). The differentially expressed lncRNAs induced by morning RF exposure were highly correlated with many different pathways, including Fanconi syndrome, metabolic processes, cell cycle, DNA damage, and DNA replication. Trans-regulation analyses further showed that differentially expressed lncRNAs were involved in multiple transcription factor-regulated pathways, such as TCFAP4, NFkB, HINFP, TFDP2, FoxN1, and PAX5. These transcription factors have all been shown to be involved in the modulation of testis development, cell cycle progression, and spermatogenesis. These findings suggest that the extent to which 1800 MHz RF induced toxicity in the testes and changed the expression of lncRNAs showed differences between morning exposure and evening exposure. These data indicate that differentially expressed lncRNAs play crucial roles in the RF exposure damage to the developing pubertal testis. Collectively, our findings provide a better understanding of the mechanisms underlying the toxic effects of RF exposure on testicular development.


Assuntos
RNA Longo não Codificante , Animais , Ritmo Circadiano/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Camundongos , RNA Longo não Codificante/genética , Espermatozoides , Testículo
3.
Int J Nanomedicine ; 14: 4601-4611, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31296989

RESUMO

Introduction: The ratio of Ce3+/Ce4+ in their structure confers unique functions on cerium oxide nanoparticles (CeO2NPs) containing rare earth elements in scavenging free radicals and protecting against oxidative damage. The potential of CeO2NPs to protect testosterone synthesis in primary mouse Leydig cells during exposure to 1,800 MHz radiofrequency (RF) radiation was examined in vitro. Methods: Leydig cells were treated with different concentrations of CeO2NPs to identify the optimum concentration for cell proliferation. The cells were pretreated with the optimum dose of CeO2NPs for 24 hrs and then exposed to 1,800 MHz RF at a power density of 200.27 µW/cm2 (specific absorption rate (SAR), 0.116 W/kg) for 1 hr, 2 hrs, or 4 hrs. The medium was used to measure the testosterone concentration. The cells were collected to determine the antioxidant indices (catalase [CAT], malondialdehyde [MDA], and total antioxidant capacity [T-AOC]), and the mRNA expression of the testosterone synthase genes (Star, Cyp11a1, and Hsd-3ß) and clock genes (Clock, Bmal1, and Rorα). Results: Our preliminary result showed that 128 µg/mL CeO2NPs was the optimum dose for cell proliferation. Cells exposed to RF alone showed reduced levels of testosterone, T-AOC, and CAT activities, increased MDA content, and the downregulated genes expression of Star, Cyp11a1, Hsd-3ß, Clock, Bmal1, and Rorα. Pretreatment of the cells with 128 µg/mL CeO2NPs for 24 hrs followed by RF exposure significantly increased testosterone synthesis, upregulated the expression of the testosterone synthase and clock genes, and increased the resistance to oxidative damage in Leydig cells compared with those in cells exposed to RF alone. Conclusion: Exposure to 1,800 MHz RF had adverse effects on testosterone synthesis, antioxidant levels, and clock gene expression in primary Leydig cells. Pretreatment with CeO2NPs prevented the adverse effects on testosterone synthesis induced by RF exposure by regulating their antioxidant capacity and clock gene expression in vitro. Further studies of the mechanism underlying the protective function of CeO2NPs against RF in the male reproductive system are required.


Assuntos
Antioxidantes/farmacologia , Cério/farmacologia , Células Intersticiais do Testículo/efeitos dos fármacos , Ondas de Rádio/efeitos adversos , Testosterona/biossíntese , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Proliferação de Células/efeitos dos fármacos , Cério/química , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células Intersticiais do Testículo/fisiologia , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos C57BL , Nanopartículas/química
4.
Reprod Toxicol ; 81: 229-236, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30125682

RESUMO

Exposure to radiofrequency fields (RF) has been reported to induce adverse effects on testosterone production and its daily rhythm. However, the mechanisms underneath this effect remain unknown. In this study, male mice were exposed to 1800 MHz radiofrequency fields (RF, 40 µW/cm2 power intensity and 0.0553 W/Kg SAR) 2 h per day for 32 days. The data suggested that RF exposure: (i) significantly reduced testosterone levels, (ii) altered the expression of genes involved in its synthesis (Star, P450scc, P450c17 and 3ß-Hsd) in testicular tissue, (iii) significantly reduced regulatory protein CaMKI/RORα. Similar observations were also made in cultured primary Leydig cells exposed in vitro to RF. However, all of these observations were blocked by CaMK inhibitor, KN-93, and ionomycin reversed the down-regulation effects on intracellular [Ca2+]i and CaMKI/RORα expression induced by RF exposure. Thus, the data provided the evidence that RF-induced inhibition of testosterone synthesis might be mediated through CaMKI/RORα signaling pathway. Capsule: CaMKI/RORα signaling pathway was involved in the inhibition of testosterone synthesis induced by RF exposure.


Assuntos
Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ondas de Rádio , Testosterona/metabolismo , Animais , Benzilaminas/farmacologia , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Ionomicina/farmacologia , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/efeitos da radiação , Masculino , Camundongos Endogâmicos C57BL , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Transdução de Sinais/efeitos da radiação , Sulfonamidas/farmacologia
5.
Int J Environ Res Public Health ; 12(2): 2071-87, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25685954

RESUMO

BACKGROUND: The potential health risks of exposure to Radiofrequency Fields (RF) emitted by mobile phones are currently of considerable public interest, such as the adverse effects on the circadian rhythmicities of biological systems. To determine whether circadian rhythms of the plasma antioxidants (Mel, GSH-Px and SOD) are affected by RF, we performed a study on male Sprague Dawley rats exposed to the 1.8 GHz RF. METHODS: All animals were divided into seven groups. The animals in six groups were exposed to 1.8 GHz RF (201.7 µW/cm² power density, 0.05653 W/kg specific absorption rate) at a specific period of the day (3, 7, 11, 15, 19 and 23 h GMT, respectively), for 2 h/day for 32 consecutive days. The rats in the seventh group were used as sham-exposed controls. At the end of last RF exposure, blood samples were collected from each rat every 4 h (total period of 24 h) and also at similar times from sham-exposed animals. The concentrations of three antioxidants (Mel, GSH-Px and SOD) were determined. The data in RF-exposed rats were compared with those in sham-exposed animals. RESULTS: circadian rhythms in the synthesis of Mel and antioxidant enzymes, GSH-Px and SOD, were shifted in RF-exposed rats compared to sham-exposed animals: the Mel, GSH-Px and SOD levels were significantly decreased when RF exposure was given at 23 and 3 h GMT. CONCLUSION: The overall results indicate that there may be adverse effects of RF exposure on antioxidant function, in terms of both the daily antioxidative levels, as well as the circadian rhythmicity.


Assuntos
Antioxidantes/metabolismo , Telefone Celular , Ritmo Circadiano , Ondas de Rádio/efeitos adversos , Animais , Biomarcadores , Masculino , Ratos , Ratos Sprague-Dawley
6.
Chronobiol Int ; 31(1): 123-33, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24117058

RESUMO

In this study, we explored the circadian effects of daily radiofrequency field (RF) exposure on reproductive functional markers in adult male Sprague-Dawley rats. Animals in circadian rhythm (as indicated by melatonin measurements), were divided into several groups and exposed to 1800 MHz RF at 205 µw/cm(2) power density (specific absorption rate 0.0405 W/kg) for 2 h/day for 32 days at different zeitgeber time (ZT) points, namely, ZT0, ZT4, ZT8, ZT12, ZT16 and ZT20. Sham-exposed animals were used as controls in the study. From each rat, testicular and epididymis tissues were collected and assessed for testosterone levels, daily sperm production and sperm motility, testis marker enzymes γ-GT and ACP, cytochrome P450 side-chain cleavage (p450cc) mRNA expression, and steroidogenic acute regulatory protein (StAR) mRNA expression. Via these measurements, we confirmed the existence of circadian rhythms in sham-exposed animals. However, rats exposed to RF exhibited a disruption of circadian rhythms, decreased testosterone levels, lower daily sperm production and sperm motility, down-regulated activity of γ-GT and ACP, as well as altered mRNA expression of cytochrome P450 and StAR. All of these observations were more pronounced when rats were exposed to RF at ZT0. Thus, our findings indicate potential adverse effects of RF exposure on male reproductive functional markers, in terms of both the daily overall levels as well as the circadian rhythmicity.


Assuntos
Ritmo Circadiano/efeitos da radiação , Fosfatase Ácida/metabolismo , Animais , Biomarcadores/metabolismo , Epididimo/efeitos da radiação , Masculino , Melatonina/biossíntese , Ondas de Rádio , Ratos , Ratos Sprague-Dawley , Motilidade dos Espermatozoides/efeitos da radiação , Espermatozoides/efeitos da radiação , Testículo/efeitos da radiação , Testosterona/biossíntese , gama-Glutamiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA