Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Microbiol ; 204(12): 690, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36326884

RESUMO

The genus Cetobacterium has been considered a dominant group of gut bacteria in many freshwater fish, and members of this genus contribute to anaerobic metabolism. Because of its significant place in the gut of freshwater fish, many studies on Cetobacterium were performed. Those studies mostly focused on the temporal and spatial changes of its abundance in fish intestine, which were affected by food or other environmental conditions. However, only a few studies isolated strains from genus Cetobacterium and reported their characteristics. In the present study, we performed 16S rRNA sequencing of the intestinal mucosa of Nile tilapia (Oreochromis niloticus) and found that Cetobacterium sp. existed widely in the foregut, midgut and hindgut mucosa, and a strain of Cetobacterium was successfully isolated from the gut of tilapia. We sequenced its whole genome and predicted it to be a novel candidate species of Cetobacterium sp. and named it NK01. The size of its genome was 3,095,946 bp, with a guanine + cytosine content of 28.8%. Among the identified genes, 2855 were predicted to be coding DNA sequences, 84 were tRNA and 34 were rRNA. We found that NK01 produced amino acids, including leucine, isoleucine, valine, glycine, alanine, phenylalanine and proline. Strain NK01 could use starch, sucrose, maltose, glucose, and mannose and synthesize and utilize glycogen. INV, GPI, malQ, malZ, sacA, scrK, glgC, glgA and glk, which were related to carbohydrate metabolism, were detected. yiaY and adhE, which oxidize ethanol to acetaldehyde and participate in a variety of metabolic pathways, were also present in the genome. No coding genes directly involved in acetate or butyrate production were detected. NK01 could also catabolize a variety of vitamins, and all genes involved in folate synthesis were detected, including folP, folC, folA and eutT, which converted vitamin B12s into vitamin B12 coenzyme. Here, we investigated the draft genome and in vitro function of Cetobacterium isolated from the intestinal tract of Nile tilapia. The results provided a preliminary understanding of the core microbiota of fish gut.


Assuntos
Ciclídeos , Microbioma Gastrointestinal , Microbiota , Animais , Ciclídeos/microbiologia , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Clostridiales/genética
2.
Mol Biol Rep ; 49(3): 2185-2196, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35064399

RESUMO

BACKGROUND: The dojo loach Misgurnus anguillicaudatus is an important economic species in Asia because of its nutritional value and broad environmental adaptability. Despite its economic importance, genomic data for M. anguillicaudatus is currently unavailable. METHODS AND RESULTS: In the present study, we conducted a genome survey of M. anguillicaudatus using next-generation sequencing technology. Its genome size was estimated to be 1105.97 Mb by using K-mer analysis, and its heterozygosity ratio, repeat sequence content, GC content were 1.45%, 58.98%, and 38.03%, respectively. A total of 376,357 microsatellite motifs were identified, and mononucleotides, with a frequency of 42.57%, were the most frequently repeated motifs, followed by 40.83% dinucleotide, 7.49% trinucleotide, 8.09% tetranucleotide, and 0.91% pentanucleotide motifs. The AC/GT, AAT/ATT, and ACAG/CTGT repeats were the most abundant motifs among dinucleotide, trinucleotide, and tetranucleotide motifs, respectively. Besides, the complete mitochondrial genome was sequenced. Based on the Maximum Likelihood and Bayesian inference analyses, M. anguillicaudatus yingde in this study was the "introgressed" mitochondrial type. Seventy microsatellite loci were randomly selected from detected SSR loci to test polymorphic, of which, 20 microsatellite loci were assessed in 30 individuals from a wild population. The number of alleles (Na), observed heterozygosity (Ho), and expected heterozygosity (He) per locus ranged from 7 to 19, 0.400 to 0.933, and 0.752 to 0.938, respectively. All 20 loci were highly informative (PIC > 0.700). Eight loci deviated from Hardy-Weinberg equilibrium after Bonferroni correction (P < 0.05). CONCLUSIONS: This is the first report of genome survey sequencing in M. anguillicaudatus, genome information, mitochondrial genome, and microsatellite markers will be valuable for further studies on population genetic analysis, natural resource conservation, and molecular marker-assisted selective breeding.


Assuntos
Cipriniformes , Genoma Mitocondrial , Animais , Teorema de Bayes , Cipriniformes/genética , Genoma Mitocondrial/genética , Genômica , Humanos , Repetições de Microssatélites/genética , Polimorfismo Genético
3.
Dis Aquat Organ ; 149: 33-45, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35510819

RESUMO

The largemouth bass Micropterus salmoides is an important freshwater aquaculture fish in China. Recently, largemouth bass at a fish farm in Guangdong province experienced an outbreak of a serious ulcer disease. As part of the investigations conducted to identify the aetiology and identify potentially effective control measures, we isolated a pathogenic bacterium (NK-1 strain) from the diseased fish. It was identified as Nocardia seriolae through morphological observation, physiological and biochemical analysis, and molecular identification, and its pathogenicity was verified by experimental infection. Pathological changes in the diseased fish included granulomatous lesions in the liver and spleen, destruction of renal tubules, necrosis of intestinal epithelial cells, infiltration of inflammatory cells in the brain, vacuolation of cells, and swelling and cracking of the mitochondria and endoplasmic reticulum. Bacterial detection using qPCR showed that the spleen and intestine were the main organs targeted by N. seriolae. The mortality of largemouth bass experimentally infected with N. seriolae at 21°C was significantly lower than that in fish infected at higher temperatures between 24 and 33°C; there were no significant differences in the levels of mortality at these higher temperatures. The level of mortality of largemouth bass infected with N. seriolae was lowest at a neutral water pH of 7 but increased significantly at higher and lower pH. Of the tested Chinese herbal medicines, Chinese sumac Galla chinensis and Chinese skullcap Scutellaria baicalensis exhibited the best antibacterial effects. This study lays a foundation for the clinical diagnosis and scientific control of ulcer disease in largemouth bass.


Assuntos
Bass , Doenças dos Peixes , Nocardia , Animais , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Úlcera/veterinária
4.
Fish Shellfish Immunol ; 97: 135-145, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31846774

RESUMO

Interleukin-1 receptor-associated kinase 1 (IRAK1) and IRAK4 are critical signalling mediators and play pivotal roles in the innate immune and inflammatory responses mediated by TLR/IL-1R. In the present study, two IRAK family members, OnIRAK1 and OnIRAK4, were identified in the Nile tilapia Oreochromis niloticus with a conserved N-terminal death domain and a protein kinase domain, similar to those of other fishes and mammals. The gene structures of OnIRAK1 and OnIRAK4 are organized into fifteen exons split by fourteen introns and ten exons split by nine introns. OnIRAK1 and OnIRAK4 were broadly expressed in all of the tissues tested, with the highest expression levels being observed in the blood and the lowest expression levels being observed in the liver. Both genes could be detected from 2 d post-fertilization (dpf) to 8 dpf during embryonic development. Moreover, the expression levels of OnIRAK1 and OnIRAK4 were clearly altered in all five tissues after Streptococcus agalactiae infection in vivo and could be induced by LPS, Poly I: C, S. agalactiae WC1535 and △CPS in Nile tilapia macrophages. The overexpression of OnIRAK1 and OnIRAK4 in 293T cells showed that they were both distributed in the cytoplasm and could significantly increase NF-κB activation. Interestingly, after transfection, OnIRAK1 significantly upregulated OnMyd88-induced NF-κB activation, while OnIRAK4 had no effect on OnMyd88-induced NF-κB activation. Co-immunoprecipitation (Co-IP) assays showed that OnMyd88 did not interact with either OnIRAK1 or OnIRAK4 and that OnIRAK1 did not interact with OnIRAK4. Taken together, these findings suggest that OnIRAK1 and OnIRAK4 could play important roles in TLR/IL-1R signalling pathways and the immune response to pathogen invasion.


Assuntos
Ciclídeos/genética , Ciclídeos/imunologia , Proteínas de Peixes/genética , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Infecções Estreptocócicas/veterinária , Animais , Clonagem Molecular , Regulação para Baixo , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/imunologia , Regulação da Expressão Gênica , Imunidade Inata , Filogenia , Alinhamento de Sequência , Transdução de Sinais/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus agalactiae , Regulação para Cima
5.
Fish Shellfish Immunol ; 86: 53-63, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30428393

RESUMO

The administration of probiotics during early ontogenetic stages can be an effective way to manipulate the gut microbiota of animals. Specifically, the administration of probiotics can enhance gut-colonization success and regulate the immune response. In this study, the effects of early contact with probiotic Lactococcus lactis subsp. lactis JCM5805 on the gut microbial assembly of larvae Nile tilapia were examined. The effects of JCM5805 on IFNα expression through the TLR7 and TLR9-dependent signal transduction pathway as well as larval disease resistance were studied. Three days postfertilization, embryos were randomly allocated into nine 30 L tanks with a concentration of 20 eggs L-1. Triplicate tanks were performed for each treatment. Treatments included a control group (C), a low probiotic concentration group (T1), where JCM5805 was added to the water at 1 × 104 cfu ml-1, and a high probiotic concentration group (T2), where JCM5805 was added to the water at 1 × 108 cfu ml-1. Probiotics were administered continuously for 15 days. qPCR was used to analyze transcript levels of the TLR7, TLR9, MyD88, IRF7 and IFNα genes using RNA extracted from whole embryos on day 5 and 10, and from the intestine of larvae on day 15. Transcription of these genes was also measured in the intestine, liver and spleen of larvae one month after the cessation of probiotic administration. The results showed that MyD88 and IRF7 were significantly elevated on days 5 and 10 in the T2 group. TLR9 and IFNα were also significantly elevated on days 5, 10 and 15 during probiotic application of T2 (P < 0.05). One month after the cessation of probiotics administration, no significant difference was observed in the expression of these genes (P > 0.05). The larvae were fed probiotics for 15 days and were infused with Streptococcus agalactiae strain WC1535 at a final concentration of 1 × 106 cfu ml-1. The survival rate of T2 was significantly higher than that of the C group (P < 0.05). Microbial characterization by Illumina HiSeq sequencing of 16S rRNA gene amplicons showed the significantly higher presence of JCM5805 in the guts of T2 after 15 days of probiotic continuous application. Although JCM5805 was below the detection level after the cessation of probiotic for 5 days, the gut microbiota of the exposed tilapia larvae in T2 remained clearly different from that of the control treatment after the cessation of probiotic administration. These data indicated that a high concentration of the probiotic strain JCM5805 upregulated the expression of IFNα via the TLR7/TLR9-Myd88 pathway and enhanced disease resistance of larvae. JCM5805 was only transiently detected and thus was not included in the stable larval microbiota. The early microbial exposure of tilapia larvae affects the gut microbiota at later life stages. However, whether the upregulation of related genes is related to the presence of JCM5805 strain in the intestine requires further verification.


Assuntos
Microbioma Gastrointestinal/imunologia , Lactococcus lactis/fisiologia , Tilápia/crescimento & desenvolvimento , Tilápia/microbiologia , Animais , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Probióticos , Distribuição Aleatória , Tilápia/imunologia , Transcriptoma
6.
Dis Aquat Organ ; 133(3): 253-261, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-31187732

RESUMO

Genetic variation in the major histocompatibility complex (MHC) Class IIB was tested in Nile tilapia Oreochromis niloticus, and the association between the MHC IIB alleles and disease resistance was also studied. F3 fry offspring (n = 1200) from 12 full-sib families were challenged with Streptococcus agalactiae, which caused significantly different mortalities in different Nile tilapia families (11.00-81.10%). Twenty fry (F1) from each of the 12 families were selected to study the polymorphisms of the MHC Class IIB gene using PCR followed by cloning and sequencing methods. The results showed that the size of the amplified fragment was 770-797 bp. Thirty-seven sequences from 240 individuals revealed 22 different alleles, which belonged to 9 major allele types. Up to 63.58% of nucleotide positions were variable, while the proportion of the amino acid variable positions was up to 68.73%. According to the survival rate of offspring (F3) from 12 full-sib families, we deduced that the alleles Orni-DAB*0107, Orni-DAB*0201 and Orni-DAB*0302 were highly associated with resistance to S. agalactiae, while the allele Orni-DAB*0701 was associated with susceptibility to S. agalactiae. In addition, our previous study found that the allele Orni-DAB*0201 was more frequently distributed in the disease-resistant groups. Therefore, the allele Orni-DAB*0201 could be used as an S. agalactiae resistance-related MHC marker in molecular marker-assisted selective breeding programs for S. agalactiae-resistant Nile tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções Estreptocócicas , Animais , Antígenos de Histocompatibilidade Classe II , Polimorfismo Genético , Streptococcus agalactiae
7.
J Fish Dis ; 42(2): 293-302, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30549284

RESUMO

Streptococcus agalactiae (Group B Streptococcus, GBS) is associated with diverse diseases in aquatic animals. The capsule polysaccharide (CPS) encoded by the cps gene cluster is the major virulence factor of S. agalactiae; however, limited information is available regarding the pathogenic role of the CPS of serotype Ia piscine GBS strains in fish. Here, a non-encapsulated mutant (Δcps) was constructed by insertional mutagenesis of the cps gene cluster. Mutant pathogenicity was evaluated in vitro based on the killing of whole blood from tilapia, in vivo infections, measuring mutant survival in tilapia spleen tissues and pathological analysis. Compared to wild-type (WT) GBS strain, the Δcps mutant had lower resistance to fresh tilapia whole blood in vitro (p < 0.01), and more easily cleared in tilapia spleen tissue, and was highly attenuated in tilapia and zebrafish. Additionally, compared to the Δcps mutant, numerous GBS strains and severe tissue necrosis were observed in the tilapia spleen tissue infected with WT strains. These results indicated that the CPS is essential for GBS pathogenicity and may serve as a target for attenuation in vaccine development. Gaining a better understanding of the role, the GBS pathogenicity in fish will provide insight into related pathogenesis and host-pathogen interactions.


Assuntos
Cápsulas Bacterianas/metabolismo , Ciclídeos , Doenças dos Peixes/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/patogenicidade , Animais , Cápsulas Bacterianas/genética , Doenças dos Peixes/sangue , Mutagênese Insercional , Polissacarídeos/genética , Polissacarídeos/metabolismo , Baço/microbiologia , Baço/patologia , Infecções Estreptocócicas/patologia , Streptococcus agalactiae/química , Streptococcus agalactiae/genética , Fatores de Virulência/genética , Peixe-Zebra
8.
Fish Shellfish Immunol ; 76: 368-379, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29550602

RESUMO

The present study aimed to evaluate the individual and combined effects of Lactobacillus rhamnosus (LR) JCM1136 and Lactococcus lactis subsp. lactis (LL) JCM5805 on the growth, intestinal microbiota, intestinal morphology, immune response and disease resistance of juvenile Nile tilapia (Oreochromis niloticus). A total of 720 apparently healthy juvenile Nile tilapia (0.20 ± 0.05 g) were randomly divided into four equal groups. Fish were fed with a basal diet (CK) supplemented with JCM1136 (LR), JCM5805 (LL), and JCM1136 + JCM5805 (LR+LL) at 1 × 108 CFU/g basal diet for 6 weeks, followed by a basal diet for 1 week. After 6 weeks of feeding, the LL treatment significantly increased the growth and feed utilization of Nile tilapia when compared with the CK. Light microscopy and transmission electron microscopy images of the midgut revealed that probiotic supplementation significantly increased gut microvilli length and microvilli density compared to CK. The transcript levels of several key immune-related genes in the mid-intestine and liver of fish were analyzed by means of quantitative polymerase chain reaction (qPCR) at the end of the sixth week. The results showed the following: when compared to CK group, fish in LR had significantly increased transcript levels of IFN-γ, lyzc, hsp70 and IL-1ß in the intestine; LL fish showed significantly increased expressions of TNF-α, IFN-γ, lyzc, hsp70 and IL-1ß in the intestine and liver; and intestine lyzc, hsp70 and IL-1ß and liver TNF-α, IFN-γ, hsp70 and IL-1ß were significantly increased in LR+LL fish. Following a 6-week period of being fed probiotics or a control diet, the tilapia were challenged with an intraperitoneal injection of 20 µl of the pathogenic Streptococcus agalactiae (WC1535) (1 × 105 CFU/ml). The survival rates of the probiotic-fed groups were significantly higher than that of the CK group, and the LL group had the highest survival rate. High-throughput sequencing revealed a significantly higher presence of JCM5805 in the guts of LL fish during the period of probiotic application, but this was no longer detected in all LL samples 1 week post cessation of probiotic administration. Cessation of probiotic administration led to disorders of individual gut microbes within the LR and LL groups. Statistical analysis (LEfSe) demonstrated that three phyla, namely, Bacteroidetes, Fusobacteria and Actinobacteria were enriched in the CK group, while the abundance of Proteobacteria was greater in the probiotic-fed fish. At the genus level, Plesiomonas, which includes potential pathogens of fish, were significantly decreased in the probiotic-fed groups. In contrast, a significant increase of Rhizobium and Achromobacter, which can produce a variety of enzymes with cellulolytic and pectolytic activity, were observed in fish fed with probiotics, indicating that dietary probiotics were helpful in the propagation of some probiotic bacteria. Our data revealed that JCM1136 and JCM5805, as a feed additive at 108 CFU/g feed, could improve intestinal morphology, enhance immune status and disease resistance, and affect the gut microbiota of tilapia; thus, these additives could be used as probiotics for juvenile Nile tilapia. JCM5805 was more effective than JCM1136 or the mixture of the two for promoting the growth, enhancing the immune status and disease resistance of tilapia.


Assuntos
Ciclídeos/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Lacticaseibacillus rhamnosus/química , Lactococcus lactis/química , Probióticos/farmacologia , Ração Animal/análise , Animais , Ciclídeos/anatomia & histologia , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/microbiologia , Dieta/veterinária , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Distribuição Aleatória
9.
Fish Shellfish Immunol ; 82: 101-114, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30099139

RESUMO

The recognition of microbial pathogens, which is mediated by pattern recognition receptors (PRRs), is critical to the initiation of innate immune responses. In the present study, we isolated the full-length cDNA and genomic DNA sequences of the MDA5, LGP2 and MAVS genes in Nile tilapia, termed OnMDA5, OnLGP2 and OnMAVS. The OnMDA5 gene encodes 974 amino acids and contains two caspase-associated recruitment domains (CARDs), a DExDc domain (DExD/H box-containing domain), a HELICc (helicase superfamily C-terminal) domain and a C-terminal regulatory domain (RD). The OnLGP2 gene encodes 679 amino acids and contains a DExDc, a HELICc and an RD. The OnMAVS gene encodes 556 amino acids and contains a CARD, a proline-rich domain, a transmembrane helix domain and a putative TRAF2-binding motif (269PVQDT273). Phylogenetic analyses showed that all three genes from Nile tilapia were clustered together with their counterparts from other teleost fishes. Real-time PCR analyses showed that all three genes were constitutively expressed in all examined tissues in Nile tilapia. OnMDA5 presented the highest expression level in the blood and the lowest expression level in the liver, while OnMAVS presented the highest expression level in the kidney. The highest expression level of OnLGP2 was detected in the liver. An examination of the expression patterns of these RIG-I-like receptors (RLRs) during embryonic development showed that the highest expression levels of OnMDA5 occurred at 2 days postfertilization (dpf), and the expression significantly decreased from 3 to 8 dpf. The expression levels of OnLGP2 significantly increased from 4 to 8 dpf. The expression levels of OnMAVS mRNA were stable from 2 to 8 dpf. Upon stimulation by intraperitoneal injection of Streptococcus agalactiae, the expression levels of OnMDA5 were first downregulated and then upregulated in the blood, gill and spleen. In the intestine and kidney, the expression of OnMDA5 was first upregulated, then downregulated, and then upregulated again. The expression of OnLGP2 was upregulated in the kidney and intestine, and the expression of OnMAVS was upregulated in the spleen. Overexpression of OnMAVS increased NF-κB activation in 293 T cells (p < 0.05), and after cotransfection with OnMDA5, the OnMAVS-dependent NF-κB activation was slightly increased (p > 0.05), after cotransfection with OnLGP2, the OnMAVS-dependent NF-κB activation was significantly decreased (p < 0.05). These findings suggest that, although the deduced protein structure of OnMDA5 is evolutionarily conserved with the structures of other RLR members, its signal transduction function is markedly different. The results also suggest that OnLGP2 has a negative regulatory effect on the OnMAVS gene. OnMDA5 and OnMAVS were uniformly distributed throughout the cytoplasm in 293 T cells, whereas OnLGP2 was distributed throughout the cytoplasm and nucleus. These results are helpful for clarifying the innate immune response against bacterial infection in Nile tilapia.


Assuntos
Ciclídeos/genética , Ciclídeos/imunologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Transdução de Sinais/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Ciclídeos/metabolismo , Proteína DEAD-box 58/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Filogenia
10.
Fish Shellfish Immunol ; 73: 207-219, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29242132

RESUMO

The nucleotide-binding oligomerization domain proteins NOD1, NOD2 and NLRC3 are cytoplasmic pattern recognition receptors (PRRs) of the Nod-like receptor (NLR) family. In the present study, the Nile tilapia (Oreochromis niloticus) NOD1 (ntNOD1), NOD2 (ntNOD2) and NLRC3 (ntNLRC3) genes were cloned and characterized. The full-length ntNOD1, ntNOD2 and ntNLRC3 genes were 3924, 3886 and 4574 bp, encoding 941, 986 and 1130 amino acids, respectively. The three Nod-like receptors have a NACHT domain and a C-terminal leucine-rich repeat (LRR) domain. In addition, ntNOD1 and ntNOD2 have a N-terminal CARD domain (ntNOD2 has two). Phylogenetic analysis showed that the three NLRs are highly conserved. Tissue expression analysis of the three receptors revealed that the highest mRNA and protein levels of ntNOD1, ntNOD2 and ntNLRC3 were in the spleen. The expression patterns of NLRs during embryonic development showed that the expression levels of ntNOD2 and ntNLRC3 significantly increased from 2 to 8 days post-fertilization (dpf). The expression levels of ntNOD1 significantly increased from 2 to 6 dpf, decreased at 7 dpf and then increased at 8 dpf. Upon stimulation with an intraperitoneal injection of Streptococcus agalactiae, expression levels of the ntNOD1, ntNOD2 and ntNLRC3 mRNA and protein were clearly altered in the blood, spleen, kidney, intestine and gill. Furthermore, after cotransfection with an NF-κB reporter plasmid, NF-κB activation in ntNOD1-overexpressing 293T cells significantly increased compared with that in control cells, before or after i-EDPA-stimulation. By contrast, compared with control, ntNOD2 and ntNLRC3 had no effect on NF-κB activation in 293T cells, when their potential ligands were not stimulated. However, after MDP-stimulation, ntNOD2 and ntNLRC3 overexpression increased NF-κB activation in 293T cells. NOD1 and NLRC3 were uniformly distributed throughout the cytoplasm in 293T cells, whereas NOD2 was distributed throughout the cytoplasm and nucleus. Our results indicate that the three Nod-like receptors are functionally conserved and may play pivotal roles in defense against pathogens such as Streptococcus agalactiae.


Assuntos
Ciclídeos/genética , Ciclídeos/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Receptores de Reconhecimento de Padrão/genética , Animais , Ciclídeos/metabolismo , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Filogenia , Receptores de Reconhecimento de Padrão/metabolismo , Infecções Estreptocócicas/imunologia , Streptococcus agalactiae/fisiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-29852253

RESUMO

Tilapia (Oreochromis mossambicus, O. urolepis hornorum, their hybrids O. mossambicus♀ × O. hornorum♂ and O. hornorum♀ × O. mossambicus♂) were exposed to a high salinity environment to evaluate their osmoregulatory responses. The plasma osmolality of all the tilapia species were elevated with the salinity challenge. The activities of Na+/K+-ATPase (NKA) in both the gill and kidney showed a similar increased change tendency compared with the control. The distribution of NKA α1 mRNA in all the examined tissues suggested that NKA α1 has a possible housekeeping role for this isoform. The amount of NKA α1 mRNA in the gill and kidney was elevated in the four fishes with similar expression patterns after transfer from freshwater to seawater. The NKAα1 mRNA expression levels in the gill reached their peak level at 24 h after transfer (P < 0.01) compared to the freshwater group, following decreases in the pretreatment level at 48 h (P > 0.05). However, the NKAα1 mRNA expression levels in the kidney were not significantly affected with increasing environmental salinity (P > 0.05). The differences in the responses to saltwater challenge may be associated with differences in saltwater tolerance between the four tilapia. The drastic increase in the plasma osmolality, NKA activities and mRNA expression suggested that the hybrids (O. mossambicus♀ × O. hornorum♂) possess heterosis in salinity responsiveness compared to that of both the parents, indicating a maternal effect on the salinity tolerance of the tilapia hybrids. This study provides a theoretical basis to further study the mechanism of fish osmoregulation response to salinity challenge.


Assuntos
Proteínas de Peixes/metabolismo , Brânquias/enzimologia , Hibridização Genética , Rim/enzimologia , Estresse Salino , ATPase Trocadora de Sódio-Potássio/metabolismo , Tilápia/fisiologia , Sequência de Aminoácidos , Animais , Feminino , Proteínas de Peixes/química , Proteínas de Peixes/genética , Água Doce , Perfilação da Expressão Gênica , Masculino , Concentração Osmolar , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Água do Mar , Homologia de Sequência de Aminoácidos , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/genética , Especificidade da Espécie , Tilápia/sangue
12.
J Fish Biol ; 93(6): 1207-1215, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30345515

RESUMO

The association between major histocompatibility complex (MHC) class IIA polymorphisms and the severity of infection by Streptococcus agalactiae was investigated using 40 susceptible and 40 resistant individuals of Nile tilapia Oreochromis niloticus. Twenty-five alleles were identified from 80 individuals, which belong to 22 major allele types. High polymorphism of mhcIIa gene and at least two loci were discovered in O. niloticus. In peptide-binding region (PBR) and non-PBR, the ratio of nonsynonymous substitution (dN) to synonymous substitution (dS) was 1.294 (>1) and 1.240 (>1), suggesting that the loci are evolving under positive balancing selection. Association analysis showed that the allele, orni-daa*0501, was significantly associated with resistance to S. agalactiae, while the alleles, orni-daa*1101, orni-daa*1301, orni-daa*1401 and orni-daa*1201, were associated with susceptibility to S. agalactiae. To confirm these correlations, another independent challenge experiment was performed in the Huizhou population of the O. niloticus. The frequency distribution showed that the orni-daa*1101 allele was significantly more frequent in the Huizhou-Susceptible group (HZ-SG) than in the Huizhou-Resistant group (HZ-RG) (P < 0.05), which was consistent with the first challenge. However, orni-daa*0501 did not present in HZ-SG and HZ-RG and the distribution frequencies of the orni-daa*1201, orni-daa*1301 and orni-daa*1401 alleles were not significantly more frequent in HZ-SG than in HZ-RG. These results indicate that the orni-daa*1101 allele confers susceptibility to S. agalactia infection. These results suggest that the diversity of exon 2 of mcaIIa alleles could be used to explore the association between disease susceptibility or resistance and the multiformity of mcaIIa and to achieve the molecular-assisted selection of O. niloticus with enhanced disease resistance.


Assuntos
Ciclídeos/genética , Resistência à Doença/genética , Doenças dos Peixes/genética , Genes MHC da Classe II/genética , Polimorfismo Genético , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae , Alelos , Sequência de Aminoácidos , Animais , Ciclídeos/microbiologia , Clonagem Molecular , Antígenos de Histocompatibilidade Classe II/química , Alinhamento de Sequência , Infecções Estreptocócicas/genética
13.
J Anat ; 230(5): 720-733, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28233306

RESUMO

The thymus in teleost fishes plays an important role in producing functionally competent T-lymphocytes. However, the thymus in tilapia is not well known, which greatly hampers investigations into the immune responses of tilapia infected by aquatic pathogens. The histological structure and ultrastructure of the thymus in Oreochromis niloticus, including embryos and larvae at different developmental stages, juveniles, and adult fish, were systematically investigated using whole mount in situ hybridization (WISH), and light and transmission electron microscopy (TEM). The position of the thymus primordium was first labeled in the embryo at 2 days post-fertilization (dpf) with the thymus marker gene recombination activating gene 1 (Rag1), when the water temperature was 27 °C. Obvious structures of the thymus were easily observed in 4-dpf embryos. At this stage, the thymus was filled with stem cells. At 6 dpf, the thymus differentiated into the cortex and medulla. The shape of the thymus was 'broad bean'-like during the early stages from 4 to 10 dpf, and became wedge-shaped in fish larvae at 20 dpf. At 6 months post-fertilization (mpf), the thymus differentiated into the peripheral zone, central zone, and inner zone. During this stage, myoid cells and adipocytes appeared in the inner zone following thymus degeneration. Then, the thymus displayed more advanced degeneration by 1 year post-fertilization (ypf), and the separation of cortex and medulla was not observed at this stage. The thymic trabecula and lobule were absent during the entire course of development. However, the typical Hassall's corpuscle was present and underwent degeneration. Additionally, TEM showed that the thymic tissues contained a wide variety of cell types, namely lymphocytes, macrophages, epithelial cells, fibroblasts, and mastocytes.


Assuntos
Ciclídeos/embriologia , Ciclídeos/crescimento & desenvolvimento , Timo/embriologia , Timo/crescimento & desenvolvimento , Fatores Etários , Animais , Timo/ultraestrutura , Tilápia
14.
Wei Sheng Wu Xue Bao ; 55(1): 96-106, 2015 Jan 04.
Artigo em Zh | MEDLINE | ID: mdl-25958688

RESUMO

OBJECTIVE: A mass mortality of tilapia broke out in an aquaculture farm in Panyu, Guangdong Province in May, 2013. Affected fish showed blackening of body color, haemorrhageing on surface, scales shedding, fin rotting, and the presence of yellow liver, dark red spleen, enlarged gallbladder and ascitic fluid in the abdominal cavity. The purpose of this research was isolating and identifying the pathogen. METHODS: We isolated a suspicious bacteria strain PYS1 from diseased fish with significant pathological signs. The homology of 16S rRNA gene sequence of strain PYS1 and its morphological, cultural, and physical and chemical characteristics were studied for its identification. Its pathogenicity was investigated by recursive infection experiment and histopathological study. Its effective medicines was screened by antibiotic sensitive test. RESULTS: The results showed that strain PYS1 was Plesiomonas shigelloides clustered with P. shigelloides strains isolated from other fishes in the molecular phylogenetic tree of 16S rRNA gene sequences. Strain PYS1 was multiple drug resistant and only sensitive to a small part of 31 tested antibiotics (e.g., ceftriaxone, cefaclor, cefazolin, etc.). The symptoms of tilapia (O. niloticus) artificially infected with strain PYS1 were similar with natural infected fish. The half lethal dose (LD50) of strain PYS1 to tilapia was 1.425 x 10(8) CFU per fish. Paraffin sections showed intestine, liver, spleen, kidney and heart tissue injury caused by the strain. CONCLUSION: Our study demonstrated that P. shigelloides was the pathogen of cultured tilapia in the aquaculture farm and first reported its bacterial pathogenicity on Nile tilapia.


Assuntos
Ciclídeos/microbiologia , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Plesiomonas/isolamento & purificação , Animais , Antibacterianos/farmacologia , Ciclídeos/crescimento & desenvolvimento , Doenças dos Peixes/patologia , Pesqueiros , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/patologia , Testes de Sensibilidade Microbiana , Filogenia , Plesiomonas/classificação , Plesiomonas/efeitos dos fármacos , Plesiomonas/genética
15.
Biosens Bioelectron ; 254: 116208, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492361

RESUMO

Aquatic fishes are threatened by the strong pathogenic bacterium Nocardia seriolae, which challenges the current prevention and treatment approaches. This study introduces luminogens with aggregation-induced emission (AIE) as an innovative and non-antibiotic therapy for N. seriolae. Specifically, the AIE photosensitizer, TTCPy-3 is employed against N. seriolae. We evaluated the antibacterial activity of TTCPy-3 and investigated the killing mechanism against N. seriolae, emphasizing its ability to aggregate within the bacterium and produce reactive oxygen species (ROS). TTCPy-3 could effectively aggregate in N. seriolae, generate ROS, and perform real-time imaging of the bacteria. A bactericidal efficiency of 100% was observed while concentrations exceeding 4 µM in the presence of white light irradiation for 10 min. In vivo, evaluation on zebrafish (Danio rerio) confirmed the superior therapeutic efficacy induced by TTCPy-3 to fight against N. seriolae infections. TTCPy-3 offers a promising strategy for treating nocardiosis of fish, paving the way for alternative treatments beyond traditional antibiotics and potentially addressing antibiotic resistance.


Assuntos
Técnicas Biossensoriais , Doenças dos Peixes , Nocardiose , Nocardia , Animais , Peixe-Zebra , Espécies Reativas de Oxigênio , Nocardiose/tratamento farmacológico , Nocardiose/veterinária , Nocardiose/microbiologia , Peixes/microbiologia , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia
16.
Bioresour Technol ; 379: 129036, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37037330

RESUMO

Biological nitrogen removal has received increasing attention in wastewater treatment. A bacterium with excellent nitrogen removal performance was isolated from biofilters of recirculating aquaculture systems (RAS) and identified as Pseudomonas chengduensis BF6. It was indicated that inorganic nitrogen is transformed into gaseous and biological nitrogen by the metabolic pathways of denitrification, anammox, and assimilation, which is the main nitrogen removal pathway of strain BF6. The strain BF6 could effectively remove nitrogen within 24 h under the conditions of ammonia, nitrate, nitrite, and mixed nitrogen sources with maximum total nitrogen removal efficiencies reaching 97.00 %, 61.40 %, 79.10 %, and 84.98 %, respectively. The strain BF6 exhibited total nitrogen removal efficiency of 91.14 %, altered the microbial diversity and enhanced the relative abundance of Pseudomonas in the RAS biofilter. These findings demonstrate that Pseudomonas sp. BF6 is a highly efficient nitrogen-removing bacterium with great potential for application in aquaculture wastewater remediation.


Assuntos
Desnitrificação , Nitrogênio , Nitrogênio/metabolismo , Pseudomonas/metabolismo , Nitritos/metabolismo , Nitratos/metabolismo , Bactérias/metabolismo , Aquicultura , Nitrificação
17.
Mol Immunol ; 143: 7-16, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34990938

RESUMO

DDX43 is one of the members of the DExD/H-box protein family, and emerging data suggest that it may play an important role in antiviral immunity across mammals. However, little is known about DDX43 in the fish immune response. In this study, we isolated the cDNA sequence of ddx43 in Nile tilapia (Oreochromis niloticus). The ddx43 gene was 2338 bp in length, contained an open reading frame (ORF) of 2064 bp and encoded a polypeptide of 687 amino acids. The predicted protein of OnDDX43 has three conserved domains, including the RNA binding domain KH, DEAD-like helicase superfamily DEXDc and C-terminal HELICc domain. In healthy Nile tilapia, the Onddx43 transcript was broadly expressed in all examined tissues, with the highest expression levels in the muscle and brain and the lowest in the liver. After challenge with Streptococcus agalactiae, lipopolysaccharides (LPS) and polyinosinic polycytidylic acid (Poly I:C), the expression level of Onddx43 mRNA was upregulated or downregulated in all of the tissues tested. Overexpression of OnDDX43 in 293 T cells showed that it has a positive regulatory effect on IFN-ß. The subcellular localization showed that OnDDX43 was expressed in the cytoplasm. We performed further pull-down assays and found that OnDDX43 interacted with both interferon-ß promoter stimulator1 (IPS-1) and TIR domain-containing adaptor inducing interferon-ß (TRIF).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Ciclídeos/imunologia , RNA Helicases DEAD-box/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Interferon beta/imunologia , Transdução de Sinais/imunologia , Animais , Ciclídeos/microbiologia
18.
Dev Comp Immunol ; 133: 104409, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35405183

RESUMO

Toll-like receptor 5 (TLR5) is responsible for bacterial flagellin recognition in vertebrates. In the present study, TLR5M was identified in the Nile tilapia Oreochromis niloticus (OnTLR5), containing a conserved LRR domain, a transmembrane region and a C-terminal TIR domain, similar to that of other fishes and mammals. OnTLR5 was broadly expressed in all the tissues examined, presenting the highest expression levels in the blood and the lowest in the kidney. OnTLR5 was detected from 2 d postfertilization (dpf) to 8 dpf during embryonic development. Moreover, expression levels of OnTLR5 were clearly altered in all five tissues examined in response to Streptococcus agalactiae infection in vivo. Overexpression of OnTLR5 in HEK293T cells revealed that OnTLR5 was distributed in the cytoplasm and significantly increased NF-κB activation. In response to cotransfection with OnMyd88, OnTLR5 significantly upregulated OnMyd88-induced NF-κB activation. Pulldown assays showed that OnTLR5 interacts with OnMyd88 and revealed an interaction between TLR5 and Aeromonas hydrophila flagellin. Taken together, these findings suggest that OnTLR5 plays important roles in TLR/IL-1R signalling pathways and the immune response to pathogen invasion.


Assuntos
Aeromonas hydrophila , Ciclídeos , Doenças dos Peixes , Fator 88 de Diferenciação Mieloide , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Peixes/sangue , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Flagelina/farmacologia , Células HEK293 , Humanos , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Receptor 5 Toll-Like/biossíntese , Receptor 5 Toll-Like/sangue , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo
19.
Int J Biol Macromol ; 218: 878-890, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908672

RESUMO

TLR3 plays a crucial role in innate immunity. In the present study, OnTLR3 was identified in the Nile tilapia Oreochromis niloticus, with a conserved LRR domain and a C-terminal TIR domain. OnTLR3 was broadly expressed in all tissues tested, with the highest expression levels in the blood and the lowest in the kidney. TLR3 mRNA could be detected from pharyngula (2.5 dpf) to late larva (8.5 dpf) during embryonic and larval development. Moreover, the expression level of OnTLR3 was clearly altered in all five tissues after Streptococcus agalactiae infection in vivo and could be induced by LPS, poly(I:C), S. agalactiae WC1535 and △CPS in Nile tilapia macrophages. When OnTLR3 was overexpressed in 293 T cells, it was distributed in the cytoplasm and could significantly increase NF-κB activation. The pulldown assays showed that OnTLR3 interacted with both OnMyD88 and OnTRIF. The binding assays revealed the specificity of OnTLR3 for pathogen-associated molecular patterns (PAMPs) and bacteria that included S. agalactiae, Aeromonas hydrophila and poly(I:C), LPS and PGN. Taken together, these findings suggest that OnTLR3, as a pattern recognition receptor (PRR), might play an important role in the immune response to pathogen invasion.


Assuntos
Ciclídeos , Doenças dos Peixes , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Ciclídeos/genética , Ciclídeos/metabolismo , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Imunidade Inata/genética , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Streptococcus agalactiae , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo
20.
Dev Comp Immunol ; 127: 104300, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34673140

RESUMO

Toll-like receptors (TLRs) play a critical role in the innate immune response of fish. In this study, we isolated the cDNA sequence of Nile tilapia TLR1 (OnTLR1). The deduced OnTLR1 protein contains a signal peptide, 7 leucine-rich repeats (LRRs), a C-terminal LRR (LRR-CT), a transmembrane region and a highly conserved TIR domain. In healthy Nile tilapia, the OnTLR1 transcript was broadly expressed in all examined tissues, with the highest expression levels in the spleen. After infection with Streptococcus agalactiae, the OnTLR1 transcripts were upregulated in the gill and kidney. After stimulation with polyinosinic-polycytidylic acid (poly(I:C)), the expression levels of OnTLR1 were significantly downregulated in the intestine, whereas OnTLR1 transcripts were significantly upregulated in the kidney. After challenge with lipopolysaccharide (LPS), the expression levels of OnTLR1 were significantly upregulated in the spleen and kidney. The subcellular localization showed that OnTLR1 was expressed in the cytoplasm. TLR1 significantly increased MyD88-dependent NF-κB activity. However, the results of a pull-down assay showed that OnTLR1 did not interact with MyD88 or TIRAP. Binding assays revealed the specificity of OnTLR1 for pathogen-associated molecular patterns (PAMPs) and bacteria that included S. agalactiae, Aeromonas hydrophila and poly(I:C) and LPS. Taken together, these findings suggest that OnTLR1, as a pattern recognition receptor (PRR), might play an important role in the immune response to pathogen invasion.


Assuntos
Ciclídeos , Doenças dos Peixes , Animais , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Imunidade Inata/genética , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Filogenia , Streptococcus agalactiae , Receptor 1 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA