Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Microb Pathog ; 192: 106683, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735447

RESUMO

Bacteria possess the ability to develop diverse and ingenious strategies to outwit the host immune system, and proteases are one of the many weapons employed by bacteria. This study sought to identify S. agalactiae additional serine protease and determine its role in virulence. The S. agalactiae THN0901 genome features one S8 family serine peptidase B (SfpB), acting as a secreted and externally exposed entity. A S8 family serine peptidase mutant strain (ΔsfpB) and complement strain (CΔsfpB) were generated through homologous recombination. Compared to the wild-type strain THN0901, the absorption of EtBr dyes was significantly reduced (P < 0.01) in ΔsfpB, implying an altered cell membrane permeability. In addition, the ΔsfpB strain had a significantly lower survival rate in macrophages (P < 0.01) and a 61.85 % lower adhesion ability to the EPC cells (P < 0.01) compared to THN0901. In the in vivo colonization experiment using tilapia as a model, 210 fish were selected and injected with different bacterial strains at a concentration of 3 × 106 CFU/tail. At 6, 12, 24, 48, 72 and 96 h post-injection, three fish were randomly selected from each group and their brain, liver, spleen, and kidney tissues were isolated. Subsequently, it was demonstrated that the ΔsfpB strain exhibited a markedly diminished capacity for colonization in tilapia. Additionally, the cumulative mortality of ΔsfpB in fish after intraperitoneal injection was reduced by 19.92-23.85 %. In conclusion, the findings in this study have demonstrated that the SfpB plays a significant role in S. agalactiae cell membrane stability and immune evasion. The immune evasion is fundamental for the development and transmission of invasive diseases, the serine protease SfpB may be a promising candidate for the development of antimicrobial agents to reduce the transmission of S. agalactiae.


Assuntos
Membrana Celular , Doenças dos Peixes , Evasão da Resposta Imune , Infecções Estreptocócicas , Streptococcus agalactiae , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidade , Streptococcus agalactiae/enzimologia , Streptococcus agalactiae/imunologia , Animais , Virulência , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/imunologia , Membrana Celular/metabolismo , Doenças dos Peixes/microbiologia , Doenças dos Peixes/imunologia , Aderência Bacteriana , Macrófagos/microbiologia , Macrófagos/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Serina Proteases/genética , Serina Proteases/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Camundongos
2.
J Fish Dis ; 47(5): e13923, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38217345

RESUMO

Amyloodinium ocellatum is among the most devastating protozoan parasites, causing huge economic losses in the mariculture industry. However, the pathogenesis of amyloodiniosis remains unknown, hindering the development of targeted anti-parasitic drugs. The A. ocellatum in vitro model is an indispensable tool for investigating the pathogenic mechanism of amyloodiniosis at the cellular and molecular levels. The present work developed a new cell line, ALG, from the gill of yellowfin seabream (Acanthopagrus latus). The cell line was routinely cultured at 28°C in Dulbecco's modified Eagle medium (DMEM) supplemented with 15% fetal bovine serum (FBS). ALG cells were adherent and exhibited an epithelioid morphology; the cells were stably passed over 30 generations and successfully cryopreserved. The cell line derived from A. latus was identified based on partial sequence amplification and sequencing of cytochrome B (Cyt b). The ALG was seeded onto transwell inserts and found to be a platform for in vitro infection of A. ocellatum, with a 37.23 ± 5.75% infection rate. Furthermore, scanning electron microscopy (SEM) revealed that A. ocellatum parasitizes cell monolayers via rhizoids. A. ocellatum infection increased the expression of apoptosis and inflammation-related genes, including caspase 3 (Casp 3), interleukin 1 (IL-1), interleukin 10 (IL-10), tumour necrosis factor-alpha (TNF-α), in vivo or in vitro. These results demonstrated that the in vitro gill cell monolayer successfully recapitulated in vivo A. latus host responses to A. ocellatum infection. The ALG cell line holds great promise as a valuable tool for investigating parasite-host interactions in vitro.


Assuntos
Doenças dos Peixes , Perciformes , Dourada , Animais , Brânquias/parasitologia , Doenças dos Peixes/parasitologia
3.
Fish Shellfish Immunol ; 128: 188-195, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35870749

RESUMO

Amyloodiniosis is a severe disease of marine and brackish water fish caused by Amyloodinium ocellatum. Golden pompano (Trachinotus ovatus) is often repeatedly infected by A. ocellatum, leading to extensive mortality. However, little is known about the immune response mechanisms of the T. ovatus following reinfection with A. ocellatum. In this study, an extensive analysis at the transcriptome level of T. ovatus skin was carried out at 24 h post-infection by A. ocellatum. During the transcriptomic analysis, 1367 differentially expressed genes (DEGs) in the skin of T. ovatus under A. ocellatum infection and control conditions were obtained. In Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotated analyses, the DEGs were significantly enriched in the immune-related pathways. To better understand the immune-related gene expression dynamics, a quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was used to assess the primary and secondary infection groups of T. ovatus at different stages (3 h, 12 h, 24 h, 48 h and, 72 h post-infection) of infection with A.ocellatum. The results showed that innate immunity-related genes [interleukin (IL-8), chemokine ligand 3 (CCL3), toll-like receptor 7 (TLR7), and G-type lysosome (LZM g)] and adaptive immunity-related gene [major histocompatibility complex (MHC) alpha antigen I and MHC alpha antigen II] expression levels in the primary and secondary infection groups were significantly increased compared to the control group. The expression of MHC I and MHC II was more rapidly upregulated in the secondary infection group compared with the primary infection group after A.ocellatum infection. However, no significant differences of A.ocellatum load were observed in primary and secondary infection groups. In addition, the serum of the primary infection group had significantly higher concentrations of triglyceride (TG), higher alanine transaminase (ALT), aspartate transaminase (AST), and lactate dehydrogenase (LDH) activities than the control group. This study contributes to understanding the defense mechanisms in fish skin against ectoparasite infection.


Assuntos
Coinfecção , Dinoflagellida , Doenças dos Peixes , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes , Imunidade Inata/genética , Interleucina-8/genética , Lactato Desidrogenases/genética , Lactato Desidrogenases/metabolismo , Ligantes , Receptor 7 Toll-Like/genética , Transcriptoma , Triglicerídeos
4.
J Fish Dis ; 42(1): 109-117, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30474192

RESUMO

Aeromonas schubertii is a major epidemiological agent that threatens cultured snakeheads (Channidae) and has caused great economic losses in fish-farming industries in China in recent years. In present study, a specific TaqMan minor groove binder (MGB) probe fluorescence real-time quantitative PCR (qPCR) assay was developed to rapidly detect and quantify A. schubertii. A pair of qPCR primers and a TaqMan MGB probe were selected from the rpoD gene, which were shown to be specific for A. schubertii. A high correlation coefficient (R2  = 0.9998) in a standard curve with a 103% efficiency was obtained. Moreover, the qPCR method's detection limit was as low as 18 copies/µl, which was 100 times more sensitive than that of conventional PCR. The detection results for the A. schubertii in pond water and fish tissue were consistent with those of the viable counts. Bacterial load changes detected by qPCR in different tissues of snakeheads infected with A. schubertii showed that the gills and intestines may be the entry for A. schubertii, and the spleen and kidney are major sites for A. schubertii replication. The established method in present study should be a useful tool for the early surveillance and quantitation of A. schubertii.


Assuntos
Aeromonas/isolamento & purificação , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos , Aeromonas/genética , Animais , Carga Bacteriana , Primers do DNA , Peixes/microbiologia , Fluorescência , Lagoas/microbiologia , Sensibilidade e Especificidade , Microbiologia da Água
5.
Front Microbiol ; 14: 1121621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138609

RESUMO

There are a variety of regulatory systems in bacteria, among which the two-component system (TCS) can sense external environmental changes and make a series of physiological and biochemical reactions, which is crucial for the life activities of bacteria. As a member of TCS, SaeRS is considered to be an important virulence factor in Staphylococcus aureus, but its function in tilapia (Oreochromis niloticus)-derived Streptococcus agalactiae remains unknown. To explore the role of SaeRS in regulating virulence in the two-component system (TCS) of S. agalactiae from tilapia, ΔSaeRS mutant strain and CΔSaeRS complementary strain were constructed by homologous recombination. The results showed that the abilities of growth and biofilm formation of ΔSaeRS strain were significantly decreased when cultured in a brain heart infusion (BHI) medium (P < 0.01). Also, the survival rate of the ΔSaeRS strain in blood was decreased when compared with the wild strain S. agalactiae THN0901. Under the higher infection dose, the accumulative mortality of tilapia caused by the ΔSaeRS strain was significantly decreased (23.3%), of which THN0901 and CΔSaeRS strains were 73.3%. The results of competition experiments in tilapia showed that the invasion and colonization abilities of the ΔSaeRS strain were also dramatically lower than those of the wild strain (P < 0.01). Compared with the THN0901, the mRNA expression levels of virulence factors (fbsB, sip, cylE, bca, etc.) in the ΔSaeRS strain were significantly down-regulated (P < 0.01). SaeRS is one of the virulence factors of S. agalactiae. It plays a role in promoting host colonization and achieving immune evasion during the infection of tilapia, which provides a basis for exploring the pathogenic mechanism of S. agalactiae infected with tilapia.

6.
Vet Parasitol ; 320: 109972, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37385103

RESUMO

Marine cultured fish often suffer from Cryptocaryon irritans infection, which causes enormous mortality. C. irritans is resistant to oxidative damage induced by zinc. To develop an effective drug to control the parasite, a putative thioredoxin glutathione reductase (CiTGR) from C. irritans was cloned and characterized. CiTGR was designed as a target to screen for inhibitors by molecular docking. The selected inhibitors were tested both in vitro and in vivo. The results showed that CiTGR is located in the nucleus of the parasite, possesses a common pyridine-oxidoreductases redox active center, and lacks a glutaredoxin active site. Recombinant CiTGR exhibited high TrxR activity but low glutathione reductase activity. Shogaol was found to significantly suppress TrxR activity and enhance toxicity of zinc on C. irritans (P < 0.05). The abundance of C. irritans on the fish body decreased significantly after oral administration of shogaol (P < 0.05). These results implied that CiTGR could be used to screen for drugs that weaken the resistance of C. irritans to oxidative stress, which is critical for controlling the parasite in fish. This paper deepens the understanding of the interaction between ciliated parasites and oxidative stress.


Assuntos
Infecções por Cilióforos , Cilióforos , Doenças dos Peixes , Hymenostomatida , Perciformes , Animais , Infecções por Cilióforos/veterinária , Infecções por Cilióforos/parasitologia , Simulação de Acoplamento Molecular , Perciformes/parasitologia , Peixes , Zinco , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/parasitologia
7.
Parasit Vectors ; 15(1): 318, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071467

RESUMO

BACKGROUND: Cryptocaryon irritans is a fatal parasite for marine teleosts and causes severe economic loss for aquaculture. Galvanized materials have shown efficacy in controlling this parasite infestation through the release of zinc ions to induce oxidative stress. METHODS: In this study, the resistance mechanism in C. irritans against oxidative stress induced by zinc ions was investigated. Untargeted metabolomics analysis was used to determine metabolic regulation in C. irritans in response to zinc ion treatment by the immersion of protomonts in ZnSO4 solution at a sublethal dose (20 µmol). Eight differential metabolites were selected to assess the efficacy of defense against zinc ion stimulation in protomonts of C. irritans. Furthermore, the mRNA relative levels of glutathione metabolism-associated enzymes were measured in protomonts following treatment with ZnSO4 solution at sublethal dose. RESULTS: The results showed that zinc ion exposure disrupted amino acid metabolism, carbohydrate metabolism, lipid metabolism, and nucleotide metabolism in C. irritans. Four antioxidants, namely ascorbate, S-hexyl-glutathione, syringic acid, and ubiquinone-1, were significantly increased in the Zn group (P < 0.01), while the glutathione metabolism pathway was enhanced. The encystment rate of C. irritans was significantly higher in the ascorbate and methionine treatment (P < 0.05) groups. Additionally, at 24 h post-zinc ion exposure, the relative mRNA level of glutathione reductase (GR) was increased significantly (P < 0.01). On the contrary, the relative mRNA levels of glutathione S-transferase (GT) and phospholipid-hydroperoxide glutathione peroxidase (GPx) were significantly decreased (P < 0.05), thus indicating that the generation of reduced glutathione was enhanced. CONCLUSIONS: These results revealed that glutathione metabolism in C. irritans contributes to oxidative stress resistance from zinc ions, and could be a potential drug target for controlling C. irritans infection.


Assuntos
Estresse Oxidativo , Zinco , Glutationa/metabolismo , Íons , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA