Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968087

RESUMO

Molecule-inclusive closed cage compounds present a unique platform for molecular motion in an isolated environment. This study showcases the incorporation of a tadpole-like polar molecule (1-propyl-1H-imidazole, PIm) into a supramolecular cage formed by duad semicage p-tert-butylcalix[4]arene. The ferroelectric phase transition as well as the cage-confined motion of encapsulated PIm was studied in detail. The unusual quadrastable state of the PIm in the paraelectric phase allows for the modulation of dipolar polarization over a broad temperature/frequency range. This compound represents the first example of a clathrate molecular ferroelectric featuring a molecule-inclusive supramolecular cage, and it also contributes to the understanding of cage-confined molecular dynamics.

2.
Inorg Chem ; 63(12): 5761-5768, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38485515

RESUMO

The reasonably constructed high-performance electrocatalyst is crucial to achieve sustainable electrocatalytic water splitting. Alloying is a prospective approach to effectively boost the activity of metal electrocatalysts. However, it is a difficult subject for the controllable synthesis of small alloying nanostructures with high dispersion and robustness, preventing further application of alloy catalysts. Herein, we propose a well-defined molecular template to fabricate a highly dispersed NiRu alloy with ultrasmall size. The catalyst presents superior alkaline hydrogen evolution reaction (HER) performance featuring an overpotential as low as 20.6 ± 0.9 mV at 10 mA·cm-2. Particularly, it can work steadily for long periods of time at industrial-grade current densities of 0.5 and 1.0 A·cm-2 merely demanding low overpotentials of 65.7 ± 2.1 and 127.3 ± 4.3 mV, respectively. Spectral experiments and theoretical calculations revealed that alloying can change the d-band center of both Ni and Ru by remodeling the electron distribution and then optimizing the adsorption of intermediates to decrease the water dissociation energy barrier. Our research not only demonstrates the tremendous potential of molecular templates in architecting highly active ultrafine nanoalloy but also deepens the understanding of water electrolysis mechanism on alloy catalysts.

3.
J Am Chem Soc ; 145(2): 1144-1154, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36538569

RESUMO

Remolding the reactivity of metal active sites is critical to facilitate renewable electricity-powered water electrolysis. Doping heteroatoms, such as Se, into a metal crystal lattice has been considered an effective approach, yet usually suffers from loss of functional heteroatoms during harsh electrocatalytic conditions, thus leading to the gradual inactivation of the catalysts. Here, we report a new heteroatom-containing molecule-enhanced strategy toward sustainable oxygen evolution improvement. An organoselenium ligand, bis(3,5-dimethyl-1H-pyrazol-4-yl)selenide containing robust C-Se-C covalent bonds equipped in the precatalyst of ultrathin metal-organic nanosheets Co-SeMON, is revealed to significantly enhance the catalytic mass activity of the cobalt site by 25 times, as well as extend the catalyst operation time in alkaline conditions by 1 or 2 orders of magnitude compared with these reported metal selenides. A combination of various in situ/ex situ spectroscopic techniques, ab initio molecular dynamics, and density functional theory calculations unveiled the organoselenium intensified mechanism, in which the nonclassical bonding of Se to O-containing intermediates endows adsorption-energy regulation beyond the conventional scaling relationship. Our results showcase the great potential of molecule-enhanced catalysts for highly efficient and economical water oxidation.


Assuntos
Cobalto , Metais , Adsorção , Oxigênio , Água
4.
Inorg Chem ; 62(7): 3297-3304, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36758163

RESUMO

Remodeling the active surface through fabricating heterostructures can substantially enhance alkaline water electrolysis driven by renewable electrical energy. However, there are still great challenges in the synthesis of highly reactive and robust heterostructures to achieve both ampere-level current density hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, we report a new Co/CeO2 heterojunction self-supported electrode for sustainable overall water splitting. The self-supporting Co/CeO2 heterostructures required only low overpotentials of 31.9 ± 2.2, 253.3 ± 2.7, and 316.7 ± 3 mV for HER and 214.1 ± 1.4, 362.3 ± 1.9, and 400.3 ± 3.7 mV for OER at 0.01, 0.5, and 1.0 A·cm-2, respectively, being one of the best Co-based bifunctional electrodes. Electrolyzer constructed from this electrode acting as an anode and cathode merely required cell voltages of 1.92 ± 0.02 V at 1.0 A·cm-2 for overall water splitting. Multiple characterization techniques combined with density functional theory calculations disclosed the different active sites on the anode and cathode, and the charge redistributions on the heterointerfaces that can optimize the adsorption of H and oxygen-containing intermediates, respectively. This study presents the tremendous prospective of self-supporting heterostructures for effective and economical overall water splitting.

5.
Inorg Chem ; 60(5): 3365-3374, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33570389

RESUMO

The development of oxygen evolution reaction (OER) catalysts with high activity and high stability through convenient and economical methods is greatly important for the promotion of hydrogen energy based on electrolysis technology. Herein, by using an unconventional high electrodeposition potential, novel petal-like clusters constructed by cross-linking ultrathin nickel hydroxide nanosheets were controllably synthesized on nickel foam (or copper foam or carbon cloth) and the effect of electrodeposition conditions on their OER performance was carefully explored. Due to the abundant catalytically active sites, promoting electron conduction/mass transmission from the specific micro-nano structure, as well as the ultrasmall thickness of ∼3.0 nm, the optimized α-Ni(OH)2/NF self-supporting electrode exhibits excellent electrocatalytic performance for OER, merely requiring low overpotentials of 192 and 240 mV to yield current densities of 10 and 100 mA cm-2 in 1.0 M KOH, respectively, which surpassed those of all of the reported nickel hydroxide/oxides and the benchmark RuO2. Moreover, α-Ni(OH)2/NF can drive the high-current density (500-1000 mA cm-2) OER at low overpotentials, meeting the requirements of potential industrial applications.

6.
Environ Sci Technol ; 55(17): 11557-11567, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34431667

RESUMO

The lockdown due to COVID-19 created a rare opportunity to examine the nonlinear responses of secondary aerosols, which are formed through atmospheric oxidation of gaseous precursors, to intensive precursor emission reductions. Based on unique observational data sets from six supersites in eastern China during 2019-2021, we found that the lockdown caused considerable decreases (32-61%) in different secondary aerosol components in the study region because of similar-degree precursor reductions. However, due to insufficient combustion-related volatile organic compound (VOC) reduction, odd oxygen (Ox = O3 + NO2) concentration, an indicator of the extent of photochemical processing, showed little change and did not promote more decreases in secondary aerosols. We also found that the Chinese provinces and international cities that experienced reduced Ox during the lockdown usually gained a greater simultaneous PM2.5 decrease than other provinces and cities with an increased Ox. Therefore, we argue that strict VOC control in winter, which has been largely ignored so far, is critical in future policies to mitigate winter haze more efficiently by reducing Ox simultaneously.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , China , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Oxigênio , Material Particulado/análise , SARS-CoV-2
8.
Angew Chem Int Ed Engl ; 58(1): 139-143, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30320948

RESUMO

Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non-3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co4 (MO4 )(eim)6 ] (M=Mo or W, Heim=2-ethylimidazole) having Co(eim)3 (MO4 ) units and high water stabilities were designed and synthesized. In different neutral media, the Mo-modulated framework coated on a glassy carbon electrode shows the best OER performances (1 mA cm-2 at an overpotential of 210 mV in CO2 -saturated 0.5 m KHCO3 electrolyte and 2/10/22 mA cm-2 at overpotential of 388/490/570 mV in phosphate buffer solution) among non-precious metal catalysts and even outperforms RuO2 . Spectroscopic measurements and computational simulations revealed that the non-3d metals modulate the electronic structure of Co for optimum reactant/product adsorption and tailor the energy of rate-determining step to a more moderate value.

9.
Yi Chuan ; 37(9): 932-8, 2015 09.
Artigo em Inglês | MEDLINE | ID: mdl-26399533

RESUMO

Gene expression profiling using microarray has contributed significantly to heterosis studies. Using the Affymetrix rice genome array, we investigated gene expression profiles in the flag leaves of the japonica hybrid rice Huayou14 and its parental cultivars Shen9A and Fan14 at the booting stage. A total of 2057 genes differentially expressed (fold change ≥2 or ≤0.5) between Huayou14 and its parents were identified. Functional classification of the differentially expressed genes by Gene Ontology (GO) analysis indicated the differentially expressed genes were significantly enriched in photosynthesis-related cellular component categories (e.g. photosystem Ⅰ, chloroplast membrane and chloroplast envelope), and biological process categories (e.g. chlorophyll catabolic, chlorophyll biosynthetic and carotenoid biosynthetic processes). These results suggest that the changes in the photosynthetic ability of the japonica hybrid rice Huayou14 may be related to heterosis. Metabolic pathway analysis indicated that differentially expressed genes were significantly enriched in photosynthesis-antenna proteins and starch and sucrose metabolic pathways, instead of photosynthesis and carbon fixation pathways as reported previously. These results suggest that different genes or metabolic pathways might contribute to the heterosis of different hybrid combinations.


Assuntos
Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Oryza/genética , Ontologia Genética , Fotossíntese , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase
10.
Sci Total Environ ; 930: 172763, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38670373

RESUMO

Surface ozone pollution, as a pressing environmental concern, has garnered widespread attention across China. Due to air mass transport, effective control of ozone pollution is highly dependent on collaborative efforts across neighboring regions. However, specific regions with strong internal interactions of ozone pollution are not yet well identified. Here, we introduced the Geospatial SHapley Additive exPlanation (GeoSHAP) approach, which primarily involves machine learning and geostatistical algorithms. Based on extensive atmospheric environmental monitoring data from 2017 to 2021, machine learning models were employed to train and predict ozone concentrations at the target location. The R2 values on the test sets of different scale regions all reached 0.98 in the overall condition, indicating that the core model has good accuracy and generalization ability. The results highlight key regions with high ozone geospatial relationship (OGR) index, predominantly located in the Northern District (ND), spanning the Fen-Wei Plain, the Loess Plateau, and the North China Plain, as well as within portions of the Yangtze River Delta (YRD) and the Pearl River Delta (PRD). Further investigation indicated that high geospatial relationships stem from a synergy between anthropogenic and natural factors, with anthropogenic factors serving as a pivotal element. This study revealed key regions with the most urgent need for joint control of anthropogenic sources to mitigate ozone pollution.

11.
Sci Total Environ ; 937: 173449, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38797425

RESUMO

Accurate identification and rapid analysis of PM2.5 sources and formation mechanisms are essential to mitigate PM2.5 pollution. However, studies were limited in developing a method to apportion sources to the total PM2.5 mass in real-time. In this study, we developed a real-time source apportionment method based on chemical mass balance (CMB) modeling and a mass-closure PM2.5 composition online monitoring system in Shenzhen, China. Results showed that secondary sulfate, secondary organic aerosol (SOA), vehicle emissions and secondary nitrate were the four major PM2.5 sources during autumn 2019 in Shenzhen, together contributed 76 % of PM2.5 mass. The novel method was verified by comparing with other source apportionment methods, including offline filter analysis, aerosol mass spectrometry, and carbon isotopic analysis. The comparison of these methods showed that the new real-time method obtained results generally consistent with the others, and the differences were interpretable and implicative. SOA and vehicle emissions were the major PM2.5 and OA contributors by all methods. Further investigation on the OA sources indicated that vehicle emissions were not only the main source of primary organic aerosol (POA), but also the main contributor to SOA by rapid aging of the exhaust in the atmosphere. Our results demonstrated the great potential of the new real-time source apportionment method for aerosol pollution control and deep understandings on emission sources.

12.
World J Clin Cases ; 11(2): 464-471, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36686343

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinations have been administered worldwide, with occasional reports of associated neurological complications. Specifically, the impact of vaccinations on individuals with X-linked Charcot-Marie-Tooth disease type 1 (CMTX1) is unclear. Patients with CMTX1 can have stroke-like episodes with posterior reversible encephalopathy syndrome on magnetic resonance imaging (MRI), although this is rare. CASE SUMMARY: A 39-year-old man was admitted with episodic aphasia and dysphagia for 2 d. He received SARS-CoV-2 vaccination 39 d before admission. Physical examination showed pes cavus and reduced tendon reflexes. Brain MRI showed bilateral, symmetrical, restricted diffusion with T2 hyperintensities in the cerebral hemispheres. Nerve conduction studies revealed peripheral nerve damage. He was diagnosed with Charcot-Marie-Tooth disease, and a hemizygous mutation in the GJB1 gene on the X chromosome, known to be pathogenic for CMTX1, was identified. Initially, we suspected transient ischemic attack or demyelinating leukoencephalopathy. We initiated treatment with antithrombotic therapy and immunotherapy. At 1.5 mo after discharge, brain MRI showed complete resolution of lesions, with no recurrence. CONCLUSION: SARS-CoV-2 vaccination could be a predisposing factor for CMTX1 and trigger a sudden presentation.

13.
Sci Total Environ ; 897: 166394, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597544

RESUMO

The evolution of black carbon (BC) particles during atmospheric aging led to the complexity of their environmental and climate effect assessment. This study simultaneously measured the heterogeneous distribution of multi-level microphysical properties of BC-containing particles (i.e., BC mass concentration, coating amounts, and morphology) by a suite of state-of-the-art instruments, and investigated how atmospheric processing influence these heterogeneities. Our field measurements show that the mixing states of atmospheric BC-containing particles exhibit a clear dependence on BC core diameters. The particles with small BC core sizes (80-160 nm) are coated and reshaped more rapidly in real atmosphere, with coating-to-BC mass ratios (MR) and non-spherical fractions of 5.1 ± 1.2 and 61 ± 19 %, respectively. Conversely, the particles with large core sizes (240-320 nm) are thinly coated and fractal, with MR and non-spherical fractions of 4.0 ± 0.3 and 74 ± 15 %, respectively. Furthermore, primary emissions result in low heterogeneity in coating amount but great heterogeneity in morphology between BC-containing particles of different sizes, while photochemical processing would enhance heterogeneity in coating amount but weaken the heterogeneity in morphology. Overall, our field measurement of multi-level microphysical properties highlights that BC core size and atmospheric processing are the key factors that drive the heterogeneity evolution of BC-containing particles in real atmosphere.

14.
World J Clin Cases ; 11(21): 5047-5055, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37583850

RESUMO

BACKGROUND: Mechanical thrombectomy is the most effective treatment for great cerebral artery embolization within a set time window. Typically, an arteriogram does not show the localization of the stent after release and whether a thrombus is captured or not. Thus, improving the visualization of a stent in interventional therapy will be helpful for clinicians. AIM: To analyze stent imaging findings to enhance clinicians' understanding of a special circumstance, wherein a Solitaire AB retrievable stent was visible during the imaging of a thrombus capture that improved the success rate of stent-based mechanical thrombectomy. METHODS: This was a retrospective study with four acute ischemic stroke (AIS) patients who underwent stent-based mechanical thrombectomy. RESULTS: Patient 1 was a 64-year-old man admitted after 5 h of confusion; angiography revealed basilar artery occlusion. We inserted a stent into the left posterior cerebral artery-P2 segment and visualized the expanded stent that successfully captured a thrombus. Patient 2 was a 74-year-old man admitted with confusion, which lasted approximately 3 h. Angiography revealed a left middle cerebral artery (MCA)-M1 segment occlusion. A stent was deployed in the distal M2 segment, and we could visualize the stent by capturing the thrombus. Patient 3 was a 74-year-old woman admitted after experiencing left hemiplegia for 3 h. We deployed a stent at the distal right MCA-M2 segment, and the developing stent captured a large thrombus. Patient 4 was an 82-year-old man who presented with confusion for 3 h. A developing stent was placed in the distal left MCA-M1 segment, which captured a large thrombus and several fragmented thrombi. CONCLUSION: To the best of our knowledge, this is the first report of stent imaging in patients with AIS. We demonstrated the usefulness and substantial potential of stent imaging in stent-based mechanical thrombectomy for AIS.

15.
Sci Total Environ ; 859(Pt 1): 160290, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36410489

RESUMO

Refractory black carbon (rBC) aerosols emitted from incomplete combustion are important climate forcers. Understanding the chemical characteristics and evolution of rBC-related components is particularly crucial to assess rBC environmental impacts. Here, we explored the chemical components of rBC in Shenzhen, China, using a soot-particle aerosol mass spectrometer (SP-AMS). The observations showed that the rBC coating was mainly composed of secondary aerosols with an average mass contribution of 84.7 %. Among them, secondary organic coating occupied ∼57.7 % of the total coating mass. Exploration of the relationship between secondary organic aerosol (SOA) coating and Ox (=NO2 + O3, an indicator of the extent of photochemical processing) showed that SOA coating was generated mainly through photochemical oxidation during the day. Similarly, sulfate coating, with a small mass fraction of 0.9 %, was also dominated by photochemical oxidation. In contrast, nitrate coating responded positively to ambient relative humidity, especially at night, indicating that it was driven by heterogeneous reactions. In addition, the increased ratio of nitrate on rBC to bulk nitrate at night suggested that black carbon surface could facilitate nocturnal nitrate formation.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Nitratos , Aerossóis/análise , Fuligem/análise , Compostos Orgânicos/análise , China , Carbono/análise , Material Particulado/análise
16.
Sci Total Environ ; 892: 164662, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37277044

RESUMO

Owing to its biotoxicity and inductive effect on photochemical pollution, atmospheric peroxyacetyl nitrate (PAN), which is a typical product of atmospheric photochemical reactions, has attracted much research attention. However, to the best of our knowledge, few comprehensive studies have been conducted on the seasonal variation and key influencing factors of PAN concentrations in southern China. In this study, PAN, ozone (O3), precursor volatile organic compound (VOC), and other pollutant concentrations were measured online for 1 year (from October 2021 to September 2022) in Shenzhen, a megacity in the Greater Bay Area of China. The average concentrations of PAN and peroxypropionyl nitrate (PPN) were 0.54 and 0.08 parts per billion (ppb), and the maximum hourly concentrations reached 10.32 and 1.01 ppb, respectively. The results of the generalized additive model (GAM) showed that the atmospheric oxidation capacity and precursor concentration were the most important factors affecting the PAN concentration. According to the steady-state model, the average cumulative contribution to the peroxyacetyl (PA) radical formation rate by six major carbonyl compounds was calculated at 4.2 × 106 molecules cm-3 s-1, and acetaldehyde (63.0 %) and acetone (13.9 %) contributed the most. Furthermore, the photochemical-age-based parameterization method was used to analyze the source contributions of carbonyl compounds and PA radicals. The results showed that although the primary anthropogenic (40.2 %), biogenic (27.8 %), and secondary anthropogenic (16.4 %) sources were the most important contributors of PA radicals, the biogenic and secondary anthropogenic source contributions both increased considerably in summer, and the cumulative proportion of both sources reached ~70 % in July. In addition, a comparison of PAN pollution processes in different seasons revealed that in summer and winter, the PAN concentration was predominantly limited by precursors and meteorological parameters, such as light intensity, respectively.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Estações do Ano , Poluentes Atmosféricos/análise , China , Ozônio/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental
17.
Environ Pollut ; 324: 121380, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36863439

RESUMO

The mixing of black carbon (BC) with secondary materials is a major uncertainty source in assessing its radiative forcing. However, current understanding of the formation and evolution of various BC components is limited, particularly in the Pearl River Delta, China. This study measured submicron BC-associated nonrefractory materials and the total submicron nonrefractory materials using a soot particle aerosol mass spectrometer and a high-resolution time-of-flight aerosol mass spectrometer, respectively, at a coastal site in Shenzhen, China. Two distinct atmospheric conditions were also identified to further explore the distinctive evolution of BC-associated components: polluted period (PP) and clean period (CP). Comparing the components of two particles, we found that more-oxidized organic factor (MO-OOA) prefers to form on BC during PP rather CP. The formation of MO-OOA on BC (MO-OOABC) was affected by both enhanced photochemical processes and nocturnal heterogeneous processes. Enhanced photo-reactivity of BC, photochemistry during the daytime, and heterogeneous reaction at nighttime were potential pathways for MO-OOABC formation during PP. The fresh BC surface was favorable for the formation of MO-OOABC. Our study shows the evolution of BC-associated components under different atmospheric conditions, which should be considered in regional climate models to improve the assessment of the climate effects of BC.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Fuligem/análise , Rios , China , Aerossóis/análise , Carbono/análise
18.
World J Clin Cases ; 11(29): 7127-7135, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37946762

RESUMO

BACKGROUND: Digital subtraction angiography (DSA), the gold standard of cerebrovascular disease diagnosis, is limited in its diagnostic ability to evaluate arterial diameter. Intravascular ultrasonography (IVUS) has advantages in assessing stenosis and plaque nature and improves the evaluation and effectiveness of carotid artery stenting (CAS). CASE SUMMARY: Case 1: A 65-year-old man presented with a five-year history of bilateral lower limb weakness due to stroke. Physical examination showed decreased strength (5-/5) in both lower limbs. Carotid artery ultrasound, magnetic resonance angiography, and computed tomography angiography (CTA) showed a right proximal internal carotid artery (ICA) stenosis (70%-99%), acute cerebral infarction, and severe right ICA stenosis, respectively. We performed IVUS-assisted CAS to measure the stenosis and detected a low-risk plaque at the site of stenosis prior to stent implantation. Post-stent balloon dilatation was performed and postoperative IVUS demonstrated successful expansion and adherence. CTA six months postoperatively showed no significant increase in in-stent stenosis. Case 2: A 36-year-old man was admitted with a right common carotid artery (CCA) dissection detected by ultrasound. Physical examination showed no positive neurological signs. Carotid ultrasound and CTA showed lumen dilation in the proximal CCA with an intima-like structure and bulging in the proximal segment of the right CCA with strip-like low-density shadow (dissection or carotid web). IVUS-assisted DSA confirmed right CCA dissection. CAS was performed and intraoperative IVUS suggested a large residual false lumen. Post-stent balloon dilatation was performed reducing the false lumen. DSA three months postoperatively indicated good stent expansion with mild stenosis. CONCLUSION: IVUS aids decision-making during CAS by accurately assessing carotid artery wall lesions and plaque nature preoperatively, dissection and stenosis morphology intraoperatively, and visualizing and confirming CAS postoperatively.

19.
Chem Sci ; 13(6): 1569-1593, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35282621

RESUMO

A balance between activity and stability is greatly challenging in designing efficient metal nanoparticles (MNPs) for heterogeneous catalysis. Generally, reducing the size of MNPs to the atomic scale can provide high atom utilization, abundant active sites, and special electronic/band structures, for vastly enhancing their catalytic activity. Nevertheless, due to the dramatically increased surface free energy, such ultrafine nanostructures often suffer from severe aggregation and/or structural degradation during synthesis and catalysis, greatly weakening their reactivities, selectivities and stabilities. Porous molecule-based materials (PMMs), mainly including metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and porous organic polymers (POPs) or cages (POCs), exhibit high specific surface areas, high porosity, and tunable molecular confined space, being promising carriers or precursors to construct ultrafine nanostructures. The confinement effects of their nano/sub-nanopores or specific binding sites can not only effectively limit the agglomeration and growth of MNPs during reduction or pyrolysis processes, but also stabilize the resultant ultrafine nanostructures and modulate their electronic structures and stereochemistry in catalysis. In this review, we highlight the latest advancements in the confinement synthesis in PMMs for constructing atomic-scale nanostructures, such as ultrafine MNPs, nanoclusters, and single atoms. Firstly, we illustrated the typical confinement methods for synthesis. Secondly, we discussed different confinement strategies, including PMM-confinement strategy and PMM-confinement pyrolysis strategy, for synthesizing ultrafine nanostructures. Finally, we put forward the challenges and new opportunities for further applications of confinement synthesis in PMMs.

20.
World J Clin Cases ; 10(5): 1580-1585, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35211595

RESUMO

BACKGROUND: Cytokine release syndrome (CRS) is defined as systemic inflammation that usually occurs following chimeric antigen receptor T-cell therapy administration; however, it has not been reported in patients with untreated non-small cell lung cancer to date. CASE SUMMARY: A 44-year-old nonsmoking woman presented to the hospital due to fever, palpitation, nausea, and cough for 1 mo and was diagnosed with stage cT3N3M0 (IIIc) adenocarcinoma of the lung. Auxiliary examinations revealed elevated cytokine [tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6] and inflammatory factor levels, which decreased after treatment with corticosteroids and immunoglobulin and when tumor growth was controlled following chemotherapy, radiotherapy, and antiangiogenesis therapy. However, tumor recurrence was observed. After administration of nivolumab as third-line treatment, the patient's condition was transiently controlled; however, CRS-like symptoms suddenly emerged, which led to a resurgence of cytokines and inflammatory factors and rapid death. CONCLUSION: CRS can develop in treatment-naïve lung cancer patients. Patients with tumor-related CRS may be at risk of CRS recurrence, aggravation, and onset of immune checkpoint inhibitor-related adverse events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA