Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pflugers Arch ; 473(1): 37-51, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33210151

RESUMO

Carotid body (CB) hyperactivity promotes hypertension in response to chronic intermittent hypoxia (CIH). The plasma concentration of adrenaline is reported to be elevated in CIH and our previous work suggests that adrenaline directly activates the CB. However, a role for chronic adrenergic stimulation in mediating CB hyperactivity is currently unknown. This study evaluated whether beta-blocker treatment with propranolol (Prop) prevented the development of CB hyperactivity, vascular sympathetic nerve growth and hypertension caused by CIH. Adult male Wistar rats were assigned into 1 of 4 groups: Control (N), N + Prop, CIH and CIH + Prop. The CIH paradigm consisted of 8 cycles h-1, 8 h day-1, for 3 weeks. Propranolol was administered via drinking water to achieve a dose of 40 mg kg-1 day-1. Immunohistochemistry revealed the presence of both ß1 and ß2-adrenoceptor subtypes on the CB type I cell. CIH caused a 2-3-fold elevation in basal CB single-fibre chemoafferent activity and this was prevented by chronic propranolol treatment. Chemoafferent responses to hypoxia and mitochondrial inhibitors were attenuated by propranolol, an effect that was greater in CIH animals. Propranolol decreased respiratory frequency in normoxia and hypoxia in N and CIH. Propranolol also abolished the CIH mediated increase in vascular sympathetic nerve density. Arterial blood pressure was reduced in propranolol groups during hypoxia. Propranolol exaggerated the fall in blood pressure in most (6/7) CIH animals during hypoxia, suggestive of reduced sympathetic tone. These findings therefore identify new roles for ß-adrenergic stimulation in evoking CB hyperactivity, sympathetic vascular hyperinnervation and altered blood pressure control in response to CIH.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Corpo Carotídeo/efeitos dos fármacos , Hipóxia , Propranolol/farmacologia , Antagonistas Adrenérgicos beta , Animais , Dióxido de Carbono , Esquema de Medicação , Masculino , Ratos , Ratos Wistar , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Sistema Nervoso Simpático/efeitos dos fármacos
2.
Auton Neurosci ; 232: 102794, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33714751

RESUMO

The prejunctional norepinephrine transporter (NET) is responsible for the clearance of released norepinephrine (NE) back into the sympathetic nerve terminal. NET regulation must be tightly controlled as variations could have important implications for neurotransmission. Thus far, the effects of sympathetic neuronal activity on NET function have been unclear. Here, we optically monitor single-terminal cardiac NET activity ex vivo in response to a broad range of sympathetic postganglionic action potential (AP) firing frequencies. Isolated murine left atrial appendages were loaded with a fluorescent NET substrate [Neurotransmitter Transporter Uptake Assay (NTUA)] and imaged with confocal microscopy. Sympathetic APs were induced with electrical field stimulation at 0.2-10 Hz (0.1-0.2 ms pulse width). Exogenous NE was applied during the NTUA uptake- and washout phases to investigate substrate competition and displacement, respectively, on transport. Single-terminal NET reuptake rate was rapidly suppressed in a frequency-dependent manner with an inhibitory EF50 of 0.9 Hz. At 2 Hz, the effect was reversed by the α2-adrenoceptor antagonist yohimbine (1 µM) (p < 0.01) with no further effect imposed by the muscarinic receptor antagonist atropine (1 µM). Additionally, high exogenous NE concentrations abolished NET reuptake (1 µM NE; p < 0.0001) and displaced terminal specific NTUA during washout (1-100 µM NE; p < 0.0001). We have also identified α2-adrenoceptor-induced suppression of NET reuptake rate during resting stimulation frequencies, which could oppose the effect of autoinhibition-mediated suppression of exocytosis and thus amplify the effects of sympathetic drive on cardiac function.


Assuntos
Coração , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Animais , Transporte Biológico , Camundongos , Norepinefrina , Sistema Nervoso Simpático
3.
Auton Neurosci ; 223: 102611, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31901784

RESUMO

Here, we validate the use of a novel fluorescent norepinephrine transporter (NET) substrate for dynamic measurements of transporter function in rodent cardiovascular tissue; this technique avoids the use of radiotracers and provides single-terminal resolution. Rodent (Wistar rats and C57BL/6 mice) hearts and mesenteric arteries (MA) were isolated, loaded with NET substrate Neurotransmitter Transporter Uptake Assay (NTUA) ex vivo and imaged with confocal microscopy. NTUA labelled noradrenergic nerve terminals in all four chambers of the heart and on the surface of MA. In all tissues, a temperature-dependent, stable linear increase in intra-terminal fluorescence upon NTUA exposure was observed; this was abolished by NET inhibitor desipramine (1 µM) and reversed by indirectly-acting sympathomimetic amine tyramine (10 µM). NET reuptake rates were similar across the mouse cardiac chambers. In both species, cardiac NET activity was significantly greater than in MA (by 62 ± 29% (mouse) and 21 ± 16% (rat)). We also show that mouse NET reuptake rate was twice as fast as that in the rat (for example, in the heart, by 94 ± 30%). Finally, NET reuptake rate in the mouse heart was attenuated with muscarinic agonist carbachol (10 µM) thus demonstrating the potential for parasympathetic regulation of norepinephrine clearance. Our data provide the first demonstration of monitoring intra-terminal NET function in rodent cardiovascular tissue. This straightforward method allows dynamic measurements of transporter rate in response to varying physiological conditions and drug treatments; this offers the potential to study new mechanisms of sympathetic dysfunction associated with cardiovascular disease.


Assuntos
Diagnóstico por Imagem/métodos , Corantes Fluorescentes , Coração/diagnóstico por imagem , Artérias Mesentéricas/diagnóstico por imagem , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/farmacocinética , Inibidores da Captação Adrenérgica/farmacologia , Animais , Carbacol/farmacologia , Agonistas Colinérgicos , Desipramina/farmacologia , Feminino , Coração/efeitos dos fármacos , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA