Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nucleic Acids Res ; 52(8): e41, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38554110

RESUMO

Human apurinic/apyrimidinic endonuclease 1 (APE1) plays crucial roles in repairing DNA damage and regulating RNA in the nucleus. However, direct visualization of nuclear APE1 in live cells remains challenging. Here, we report a chaperone@DNA probe for live-cell imaging of APE1 in the nucleus and nucleolus in real time. The probe is based on an assembly of phenylboronic acid modified avidin and biotin-labeled DNA containing an abasic site (named PB-ACP), which cleverly protects DNA from being nonspecifically destroyed while enabling targeted delivery of the probe to the nucleus. The PB-ACP construct specifically detects APE1 due to the high binding affinity of APE1 for both avidin and the abasic site in DNA. It is easy to prepare, biocompatible and allowing for long-term observation of APE1 activity. This molecular tool offers a powerful means to investigate the behavior of APE1 in the nuclei of various types of live cells, particularly for the development of improved cancer therapies targeting this protein.


Assuntos
Nucléolo Celular , Núcleo Celular , Sondas de DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Sondas de DNA/química , Células HeLa , Chaperonas Moleculares/metabolismo , Avidina/química , Avidina/metabolismo , DNA/metabolismo , Biotina/química
2.
J Am Chem Soc ; 146(20): 14287-14296, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38718348

RESUMO

PEDOT: PSS has been widely used as a hole extraction layer (HEL) in organic solar cells (OSCs). However, their acidic nature can potentially corrode the indium tin oxide (ITO) electrode over time, leading to adverse effects on the longevity of the OSCs. Herein, we have developed a class of biphosphonic acid molecules with tunable dipole moments for self-assembled monolayers (SAMs), namely, 3-BPIC(i), 3-BPIC, and 3-BPIC-F, which exhibit an increasing dipole moment in sequence. Compared to centrosymmetric 3-BPIC(i), the axisymmetric 3-BPIC and 3-BPIC-F exhibit higher adsorption energies (Eads) with ITO, shorter interface spacing, more uniform coverage on ITO surface, and better interfacial compatibility with the active layer. Thanks to the incorporation of fluorine atoms, 3-BPIC-F exhibits a deeper highest occupied molecular orbital (HOMO) energy level and a larger dipole moment compared to 3-BPIC, resulting in an enlarged work function (WF) for the ITO/3-BPIC-F substrate. These advantages of 3-BPIC-F could not only improve hole extraction within the device but also lower the interfacial impedance and reduce nonradiative recombination at the interface. As a result, the OSCs using SAM based on 3-BPIC-F obtained a record high efficiency of 19.71%, which is higher than that achieved from the cells based on 3-BPIC(i) (13.54%) and 3-BPIC (19.34%). Importantly, 3-BPIC-F-based OSCs exhibit significantly enhanced stability compared to that utilizing PEDOT:PSS as HEL. Our work offers guidance for the future design of functional molecules for SAMs to realize even higher performance in organic solar cells.

3.
Small ; : e2401054, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488748

RESUMO

2D conjugated extension on central units of small molecular acceptors (SMAs) has gained great successes in reaching the state-of-the-art organic photovoltaics. Whereas the limit size of 2D central planes and their dominant role in constructing 3D intermolecular packing networks are still elusive. Thus, by exploring a series of SMAs with gradually enlarged central planes, it is demonstrated that, at both single molecular and aggerated levels, there is an unexpected blue-shift for their film absorption but preferable reorganization energies, exciton lifetimes and binding energies with central planes enlarging, especially when comparing to their Y6 counterpart. More importantly, the significance of well-balanced molecular packing modes involving both central and end units is first disclosed through a systematic single crystal analysis, indicating that when the ratio of central planes area/end terminals area is no more than 3 likely provides a preferred 3D intermolecular packing network of SMAs. By exploring the limit size of 2D central planes, This work indicates that the structural profiles of ideal SMAs may require suitable central unit size together with proper heteroatom replacement instead of directly overextending 2D central planes to the maximum. These results will likely provide some guidelines for future better molecular design.

4.
Small ; 20(24): e2311561, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38546001

RESUMO

Balancing the rigid backbones and flexible side chains of light-harvesting materials is crucially important to reach optimized intermolecular packing, micromorphology, and thus photovoltaic performance of organic solar cells (OSCs). Herein, based on a distinctive CH-series acceptor platform with 2D conjugation extended backbones, a series of nonfullerene acceptors (CH-6F-Cn) are synthesized by delicately tuning the lengths of flexible side chains from n-octyl to n-amyl. A systemic investigation has revealed that the variation of the side chain's length can not only modulate intermolecular packing modes and crystallinity but also dramatically improve the micromorphology of the active layer and eventual photovoltaic parameters of OSCs. Consequently, the highest PCE of 18.73% can be achieved by OSCs employing D18:PM6:CH-6F-C8 as light-harvesting materials.

5.
Molecules ; 28(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37175345

RESUMO

As a major apurinic/apyrimidinic endonuclease and a redox signaling protein in human cells, APE1 plays a crucial role in cellular function and survival. The relationship between alterations of APE1 expression and subcellular localization and the initiation, development and treatment of various cancers has received extensive attention. However, comparing the in-vivo activity of APE1 in normal and cancerous breast live cells remains challenging due to the low efficiency of commonly used liposome transfection methods in delivering DNA substrate probes into human normal breast epithelial cells (MCF-10A). In this work, we develop a DNA/RNA hybrid-based small magnetic fluorescent nanoprobe (25 ± 3 nm) that can be taken up by various live cells under magnetic transfection. The D0/R-nanoprobe demonstrates an outstanding specificity toward APE1 and strong resistance to the cellular background interference. Using this nanoprobe, we are not only able to visualize the intracellular activity of APE1 in breast ductal carcinoma (MCF-7) live cells, but also demonstrate the APE1 activity in MCF-10A live cells for the first time. The method is then extended to observe the changes in APE1 levels in highly metabolically active neuroendocrine cells under normal conditions and severe attacks by reactive oxygen species in real-time. The fluorescent nanoprobe provides a useful tool for studying the dynamic changes of intracellular APE1 in normal or cancerous live cells. It also displays the potential for visible and controllable release of miRNA drugs within live cells for therapeutic purposes.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/patologia , DNA , Neurônios/metabolismo , Endonucleases , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo
6.
Angew Chem Int Ed Engl ; 62(44): e202312630, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37704576

RESUMO

Due to the intrinsically flexible molecular skeletons and loose aggregations, organic semiconductors, like small molecular acceptors (SMAs) in organic solar cells (OSCs), greatly suffer from larger structural/packing disorders and weaker intermolecular interactions comparing to their inorganic counterparts, further leading to hindered exciton diffusion/dissociation and charge carrier migration in resulting OSCs. To overcome this challenge, complete peripheral fluorination was performed on basis of a two-dimensional (2D) conjugation extended molecular platform of CH-series SMAs, rendering an acceptor of CH8F with eight fluorine atoms surrounding the molecular backbone. Benefitting from the broad 2D backbone, more importantly, strengthened fluorine-induced secondary interactions, CH8F and its D18 blends afford much enhanced and more ordered molecular packings accompanying with enlarged dielectric constants, reduced exciton binding energies and more obvious fibrillary networks comparing to CH6F controls. Consequently, D18:CH8F-based OSCs reached an excellent efficiency of 18.80 %, much better than that of 17.91 % for CH6F-based ones. More excitingly, by employing D18-Cl that possesses a highly similar structure to D18 as a third component, the highest efficiency of 19.28 % for CH-series SMAs-based OSCs has been achieved so far. Our work demonstrates the dramatical structural multiformity of CH-series SMAs, meanwhile, their high potential for constructing record-breaking OSCs through peripheral fine-tuning.

7.
Angew Chem Int Ed Engl ; 61(41): e202209580, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35894110

RESUMO

Halogenation of terminal of acceptors has been shown to give dramatic improvements in power conversion efficiencies (PCEs) of organic solar cells (OSCs). Similar significant results could be expected from the halogenation of the central units of state-of-the-art Y-series acceptors. Herein, a pair of acceptors, termed CH6 and CH4, featuring a conjugation-extended phenazine central unit with and without fluorination, have been synthesized. The fluorinated CH6 has enhanced molecular interactions and crystallinity, superior fibrillar network morphology and improved charge generation and transport in blend films, thus affording a higher PCE of 18.33 % for CH6-based binary OSCs compared to 16.49 % for the non-fluorinated CH4. The new central site offers further opportunities for structural optimization of Y-series molecules to afford better-performed OSCs and reveals the effectiveness of fluorination on central units.

8.
J Am Chem Soc ; 140(49): 16925-16928, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30484642

RESUMO

A bionanocomposite with artificial binding pockets for a DNA repair enzyme has been developed by in situ assembly of an affinity protein with a surrounding contact surface of polydopamine on the surface of silica coated magnetic nanoparticles via molecular imprinting reactions. The obtained nanoparticles exhibited antibody-like binding behavior toward the target enzyme with highly specific and efficient inhibition effect. Moreover, the binding and inhibition could be flexibly tuned by the addition of metal ions such as Mn2+ and Mg2+, which provided a convenient tool to regulate enzyme activity with artificially engineered nanoinhibitors.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , Inibidores Enzimáticos/química , Nanopartículas de Magnetita/química , Nanocompostos/química , Avidina/química , Avidina/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Indóis/química , Ligantes , Magnésio/química , Manganês/química , Impressão Molecular/métodos , Polímeros/química , Ligação Proteica , Dióxido de Silício/química
9.
Chem Commun (Camb) ; 59(89): 13367-13370, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37874298

RESUMO

Although peripheral hetero-di-halogenation of non-fullerene acceptors (NFAs) would allow more precise optimization of molecular properties by providing the complementary advantages of two different halogens, thus enabling further improvements of organic solar cells (OSCs), hetero-di-halogenated NFAs are seldom prepared due to the challenging construction of building blocks with two adjacent hetero-halogens. Herein, three CH-series acceptors with hetero-di-halogenated central units, named CH-FC, CH-FB and CH-CB, are constructed successfully. PM6:D18:CH-FB-based OSCs afforded an attractive PCE of 19.0% due to tighter intermolecular packing at both the single-crystal and blended-film levels, more efficient charge transfer/dissociation, and superior film morphology compared to those of PM6:D18:CH-FC (PCE 18.41%) and PM6:D18:CH-CB (PCE 18.21%). Our work highlights the effectiveness of such a CH-series molecular platform in conducting hetero-di-halogenation and achieving high-performance OSCs, and will stimulate further exploration of hetero-substitution-based acceptors.

10.
ACS Appl Mater Interfaces ; 13(29): 35207-35213, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34279082

RESUMO

A blue-light-emitting liquid crystalline (LC) material was designed and prepared. By employing a twisted luminescent core (i.e., tetraphenylethene), four peripheral LC units with long alkyl chains and the small polar benzyl-ether-typed linking groups, the resulting material displayed a hexagonal columnar phase near room temperature and a disc-like nematic phase between 32 and 70 °C. The columnar LC showed a high quantum yield of 0.49 at 20 °C, and the efficient luminescence property was retained even in the isotropic phase at high temperature. Additionally, the fluidity of the nematic phase rendered the LC a non-volatile solvent, and the proper addition of a red dye led to the achievement of polarized white-light emission, which revealed a promising application prospect in LC display fabrication.

11.
Anal Chim Acta ; 1137: 225-237, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33153605

RESUMO

Nucleases play crucial roles in maintaining genomic integrity. Visualization of intracellular distribution and translocation of nucleases are of great importance for understanding the in-vivo physiological functions of these enzymes and their roles in DNA repair and other cellular signaling pathways. Here we review the recently developed approaches for fluorescence imaging of nucleases in various eukaryotic cells. We mainly focused on the immunofluorescence techniques, the genetically encoded fluorescent probes and the chemically synthesized fluorescent DNA-substrate probes that enabled in-situ visualization of the subcellular localization of nucleases and their interactions with other protein/DNA molecules within cells. The targeted nucleases included important endonucleases, 3' exonucleases and 5' exonucleases that were involved in the DNA damage repair pathways and the intracellular DNA degradation. The advantages and limitations of the available tools were summarized and discussed.


Assuntos
Reparo do DNA , Endonucleases , DNA/genética , Endonucleases/metabolismo , Corantes Fluorescentes , Imagem Óptica
12.
Anal Chim Acta ; 920: 86-93, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27114227

RESUMO

NBDlyso with lysosome-locating morpholine moiety has been developed as a high selective and sensitive fluorescent pH probe. This probe can respond to acidic pH (2.0-7.0) in a short time (less than 1 min) and not almost change after continuously illuminated for an extended period by ultraviolet light. The fluorescence intensity of NBDlyso enhanced 100-fold in acidic solution, with very good linear relationship (R(2) = 0.996). The pKa of probe NBDlyso is 4.10. Therefore, NBDlyso was used to detect lysosomal pH changes successfully. Besides, X-ray crystallography was used to verify the structure of NBDlyso, and the recognition mechanism involving photo-induced electron transfer was interpreted theoretically by means of DFT and TDDFT calculations skillfully when NBDlyso comes into play under the acidic condition. This probe showed good ability to sense pH change in living cell image.


Assuntos
Corantes Fluorescentes/química , Lisossomos/química , Lisossomos/ultraestrutura , Microscopia de Fluorescência/métodos , Oxidiazóis/química , Cristalografia por Raios X , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Imagem Óptica/métodos
13.
Chem Commun (Camb) ; 52(13): 2760-3, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26757700

RESUMO

A new mitochondria-targeted fluorescent probe HCy-D, constructed by dansyl and hemicyanine fluorophores, for SO2 derivatives (HSO3(-)/SO3(2-)) was presented. This probe was designed based on a new FRET platform. HCy-D showed a ratiometric, sensitive and rapid response to HSO3(-)/SO3(2-). Importantly, HCy-D was successfully used for fluorescence imaging of endogenous bisulfite in HepG2 cells, which may benefit cancer diagnosis by discriminating liver cancer cells from normal liver cells.


Assuntos
Corantes Fluorescentes/química , Mitocôndrias/química , Dióxido de Enxofre/análise , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Células Hep G2 , Humanos , Dióxido de Enxofre/química
14.
Anal Chim Acta ; 888: 138-45, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26320969

RESUMO

We have developed the first two-photon colorimetric and ratiometric fluorescent probe, BICO, for the detection of bisulfite (HSO3(-)) in aqueous solution. The probe contains coumarin and benzimidazole moieties and can detect HSO3(-) based on the Michael addition reaction with a limit of detection 5.3 × 10(-8) M in phosphate-buffered saline solution. The probe was used to detect bisulfite in tap water, sugar and dry white wine. Moreover, test strips were made and used easily. We successfully applied the probe to image living cells, using one-photon fluorescence imaging. BICO overcomes the limitations in sensitivity of previously reported probes and the solvation effect of bisulfite, which demonstrates its excellent value in practical application.


Assuntos
Cumarínicos/química , Corantes Fluorescentes/química , Sulfitos/análise , Água/análise , Linhagem Celular , Colorimetria/métodos , Humanos , Microscopia de Fluorescência , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA