Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 35(7): e21368, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34125448

RESUMO

In the current study, we sought to determine the roles of histone deacetylase 5 (HDAC5) on the promotion of intestinal sepsis in a mouse model. Dual luciferase reporter gene assay was used to determine the binding relationship between HDAC5 and Ghrelin. Cecal ligation and puncture (CLP) was used as an animal model of intestinal sepsis. The roles of HDAC5 on intestinal sepsis were determined by HDAC5 knockdown, overexpression, and inhibitor (LMK-235) in vivo. Mice intestinal permeability and intestinal epithelial damage were evaluated, and HE staining was used to evaluate the intestinal mucosal injury index. Lipopolysaccharide (LPS)-treated intestinal-derived macrophages served as a cell model of sepsis, followed by the loss-of-function and gain-of-function assays. ELISA was used to determine the levels of inflammatory factors, and TUNEL staining was used to detect intestinal cell apoptosis. HDAC5 was upregulated in the intestine of sepsis patients. This increased HDAC5 expression was positively correlated with the expression of inflammatory factors TNF-α, IL-1ß, IL-6, and HMGB1, as well as the intestinal dysfunction-related factors IFABP. In sepsis mice, the expression of inflammatory factors was reduced by HDAC5 knockdown. HDAC5 knockdown also improved survival, morphology of intestinal tissue, intestinal permeability, and epithelial damage. Ghrelin was bound and inhibited by HDAC5, but E2F1 expression was increased by Ghrelin overexpression, leading to inhibition of the NF-κB pathway. Ghrelin and E2F1 expression were increased by the treatment with HDAC5 inhibitor LMK-235, which inhibited the NF-κB pathway to improve intestinal dysfunction in the sepsis model. In conclusion, HDAC5 inhibits Ghrelin to reduce E2F1 and thus activate the NF-κB pathway, thereby promoting intestinal sepsis.


Assuntos
Fator de Transcrição E2F1/metabolismo , Grelina/metabolismo , Histona Desacetilases/metabolismo , Enteropatias/patologia , NF-kappa B/metabolismo , Sepse/patologia , Animais , Modelos Animais de Doenças , Fator de Transcrição E2F1/genética , Regulação da Expressão Gênica , Grelina/genética , Histona Desacetilases/genética , Humanos , Enteropatias/genética , Enteropatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Sepse/genética , Sepse/metabolismo
2.
Environ Res ; 211: 113085, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35307372

RESUMO

Variations in vegetation are influenced by regional climate regimes and, in turn, control the water balance behavior in water-limited regions. Owing to its role in ecohydrological processes, vegetation is an essential link in modeling the relationships among climate conditions, vegetation patterns, and dynamic water balance behavior. However, previous ecohydrological models have been empirical and complex, without physically significant parameters. Here, we propose a novel ecohydrological model (a Budyko model-coupled vegetation model) that combines the impacts of climate change and vegetation variations, featuring simple and deterministic parameters. In addition to accounting for the fundamental water balance model and its factors, mean precipitation, potential evapotranspiration, runoff, and variations in water storage (δS), the model showed better performance when incorporating δS (RMSE = 2.72 mm yr-1) and its parameter ε -, which is mechanically and quantitively subject to the vegetation coverage (R2 = 0.95, p < 0.01). This was estimated as a function of vegetation potential canopy conductance, mean rainstorm depth, mean time between storms, and potential rate of evapotranspiration in a semi-arid watershed with impulsive precipitation in China (R2 = 0.80, p < 0.01). The model also found that vegetation growth was mainly controlled by soil water content and decoupled the impact of the total amount of precipitation on vegetation in the northeastern area of the watershed. Hence, our method presents a new tool for building an ecohydrological model that includes deterministic parameters of mechanical significance.


Assuntos
Mudança Climática , Solo , China , Ecossistema , Água
3.
Mikrochim Acta ; 189(8): 305, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915288

RESUMO

Sensitive quantification of protein biomarkers is highly desired for clinical diagnosis and treatment. Yet, unlike DNA/RNA which can be greatly amplified by PCR/RT-PCR, the amplification and detection of trace amount of proteins remain a great challenge. Here, we combined allosteric probe (AP) with magnetic bead (MB) for assembling an on-bead DNA synthesis system (named as APMB) to amplify protein signals. The AP is designed and conjugated onto the MB, enabling the protein biomarker to be separated and enriched. Once recognizing the biomarker, the AP alters its conformation to initiate DNA synthesis on beads for primary signal amplification. During the DNA synthesis, biotin-dATPs are incorporated into the newly synthesized DNA strands. Then, the biotin-labeled DNA specifically captures streptavidin (STR)-conjugated horseradish peroxidase (HRP), which is used to catalyze a colorimetric reaction for secondary signal amplification. By using carcinoembryonic antigen (CEA) as a protein model, the APMB can quantify protein biomarkers of as low as 0.01 ng/mL. The response values measured by APMB are linearly related to the protein concentrations in the range 0.05 to 20 ng/mL. Clinical examination demonstrated good practicability of the APMB in quantifying serum protein biomarker. The on-bead DNA synthesis could be exploited to improve protein signal amplification, thus facilitating protein biomarker detection of low abundance for early diagnosis.


Assuntos
Biotina , Antígeno Carcinoembrionário , Colorimetria , DNA , Técnicas de Amplificação de Ácido Nucleico
4.
Water Sci Technol ; 80(2): 329-338, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31537769

RESUMO

In this study, biochar was prepared from Alternanthera philoxeroides (AP) under O2-limited condition at 350 °C (LB) and 650 °C (HB) and treated with aging by HNO3/H2SO4 oxidation. Structural changes of the biochar after aging treatment and the treatment's effect on Pb(II) absorption were explored. The results showed that oxygen-containing functional groups, aromatic structure and surface area of the biochar increased after the aging treatment. However, the integrity of the tubular structure was broken into fragments. The adsorption process of Pb(II) was in accordance with the pseudo-second-order kinetic model and fitted by the Langmuir model. With the increase of pH, the adsorption capacities of Pb(II) increased gradually, and the adsorption effect was best at pH 5. The aged HB presented a decrease of the carboxyl group, which caused less adsorption capacity of Pb(II) than that of aged LB. The maximum adsorption capacities of Pb(II) on fresh biochar at 350 °C and 650 °C were 279.85 and 286.07 mg·g-1 and on aged biochar were 242.57 and 159.82 mg·g-1, respectively. The adsorption capacity of HB for Pb(II) was higher than that of LB, and the adsorption capacity of aged biochar for Pb(II) decreased obviously, which might be attributable to changes in physicochemical properties of biochar after the aging treatment.


Assuntos
Carvão Vegetal/química , Chumbo/química , Poluentes Químicos da Água/química , Adsorção , Cinética , Chumbo/análise , Poluentes Químicos da Água/análise
5.
J Nanosci Nanotechnol ; 17(2): 1413-419, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-29687975

RESUMO

Polyhedral Fe3O4 hollow spheres were synthesized using hexamethylenetetramine as structure-directing agent and the effect of hexamethylenetetramine on the morphology was investigated in detailed. The comparison for samples prepared with and without hexamethylenetetramine indicated that hexamethylenetetramine played a vital role in the formation process of the hollow polyhedral structure. The formation process and growth mechanism of Fe3O4 spheres with hollow polyhedral morphology were preliminarily explored according to a detailed time-dependent morphology and structure evolution. It was deduced that the hollow polyhedral structure can be ascribed to the cooperation of oriented aggregation and Ostwald ripening mechanisms. The as-prepared Fe3O4 hollow spheres with polyhedral structures which possess high magnetization saturation value (73 emu/g) at room temperature, large cavity and huge specific surface area (57.12 m2·g­1) are expected to have wide potential applications, for example in the drug delivery process, magnetic separation and waste treatment in the future.

6.
J Dairy Sci ; 100(8): 6025-6041, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28551178

RESUMO

This study investigated the effect of exopolysaccharide (EPS) produced by Lactobacillus plantarum YW11 on the oxidative status and gut microbiota in an aging mouse model induced with d-galactose. The in vitro assay of the antioxidant activity of the EPS showed concentration-dependent (0.25-3.0 mg/mL) activities. At 3.0 mg/mL, the EPS reached the highest scavenging activities with half maximal inhibitory concentration values against hydroxyl radicals at 75.10% and 1.22 mg/mL, superoxide anion at 62.71% and 1.54 mg/mL, 2, 2-diphenyl-1-picrylhydrazyl at 35.11% and 0.63 mg/mL, and the maximal chelating rate on ferrous ion and the half-maximal chelating concentration of the EPS at 41.09% and 1.07 mg/mL, respectively. High doses of EPS (50 mg/kg per day) effectively relieved the oxidative stress in the aging mice with increased levels of glutathione peroxidase, superoxide dismutase, catalase, and total antioxidant capacity in mice serum by 21.55, 33.14, 61.09, and 38.18%, respectively, and decreased malondialdehyde level from 11.69 to 5.89 mmol/mL compared with those in the untreated aging mice model. The analysis of pyrosequencing sequence data from the gut microbiota revealed that the EPS could recover the microbiota diversity and phylotypes decreased or eliminated by the d-galactose treatment. The EPS could selectively decrease the abundance of Flexispira (37.5 fold), and increase the abundance of Blautia (36.5 fold) and Butyricicoccus (9.5 fold), which correspondingly decreased the content of nitrogen oxides to 9.87% and increased the content of short-chain fatty acids by 2.23 fold, thereby improving the oxidative and health conditions of the host intestinal tract. Further correlation analysis of core-microbiota variation induced by different treatments showed a strong correlation with oxidative phenotypes [catalase, goodness of prediction (Q2) = 0.49; total antioxidant capacity, Q2 = 0.45; nitrogen oxides, Q2 = 0.67; short-chain fatty acids, Q2 = 0.55]. The fermented milk with L. plantarum YW11 containing EPS also showed favorable antioxidant and gut microbiota regulating activities. The present finding provided new insights into the functional mechanism of probiotics bioactivity.


Assuntos
Antioxidantes/metabolismo , Microbioma Gastrointestinal , Kefir/microbiologia , Lactobacillus plantarum/metabolismo , Polissacarídeos Bacterianos/biossíntese , Envelhecimento , Animais , Produtos Fermentados do Leite , Galactose , Camundongos , Modelos Animais
7.
J Nanosci Nanotechnol ; 15(6): 4276-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26369039

RESUMO

The photoluminescence (PL) quenching of thioglycolic acid (TGA)-capped CdTe quantum dots (QDs) by glutathione (GSH)-capped Au nanocrystals (NCs) were investigated via PL degradated measurement. It was found that the PL of the QDs with several sizes can be effectively quenched by GSH-Au NCs. The size and PL peak wavelengths of QDs have no significant impact on the quenching processing. Through the characterizations of UV-visble absorption spectrum, Zeta potential and steady-state, and time-resolved fluorescence spectroscopy, it was proved that the PL quenching of the QDs by GSH-Au NCs was attributed to static quenching caused by the formation of a QDs-Au complex. The binding parameters calculated from modified Stern-Volmer equation showed that the binding affinities between the GSH-Au NCs and CdTe QDs was in the order of 10(5) L x mol(-1), which indicated that the binding force was larger and the effective quenching occurred. The thermodynamic parameters studies revealed that the binding was characterized by positive enthalpy and positive entropy changes and hydrophobic force played a major role for QDs-Au association. In addition, all the quenching experiments were conducted in the phosphate-buffered saline (PBS) buffer solution at pH 7.4 and the investigation is expected to be applied in the biology.


Assuntos
Compostos de Cádmio/química , Glutationa/química , Nanopartículas/química , Pontos Quânticos/química , Telúrio/química , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Fluorescência
8.
J Nanosci Nanotechnol ; 14(7): 5238-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24758010

RESUMO

The high luminescent near infrared (NIR)--emitting CdTe nanocrystals (NCs) with 3-mercaptopropionic acid (MPA) as the stabilized molecules had been sucessfully fabricated by a facile and simple water-reflux method. By virtue of the characterizations for the as-prepared MPA-capped CdTe NCs, such as UV-Vis absorption, steady-state photoluminescence (PL), time-resolved PL spectra and PL image, the optical properties, diameters and morphologies of the CdTe NCs were investigated detailedly. With the increase of reflux time, the PL peak wavelength of NCs gradually shifted from red light to NIR spectra range within 7 h, and the PL quantum yield (QY) was increased firstly and then decreased slightly. It was worth noted that the NCs still showed a relative high PL QY of 47% as well as a narrow full width at half maximum (FWHM) of PL spectra even when the NCs emitted at the NIR wavelength of 754 nm. In addition, the average PL lifetime also exhibited an obvious increase as the growth of CdTe NCs due to the formation of thin CdS shell on the surface of CdTe. The PL stabilities for these NIR-emitting NCs (754 nm) in phosphate-buffered saline (PBS) buffer solution with various concentrations ranged from 0.005 to 0.1 M were also checked accordingly, and the results indicated that the as-prepared NIR-emitting CdTe NCs had a satisfied PL stability, implying a potential application in the biological field. Hopefully, all the superiority of these NIR-emitting CdTe NCs, such as high PL QY and PL lifetime, narrow FWHM of PL spectra, high PL stability in PBS solution, would make them to be a good candidate for biological applications in future.

9.
Luminescence ; 29(5): 407-11, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23946281

RESUMO

Alloy CdTe(1-x)Se(x) quantum dots (QDs) have been fabricated by an organic route using Cd, Te and Se precursors in a mixture of trioctylamine and octadecylphosphonic acid at 280 °C. The variation of photoluminescence (PL) peak wavelength of the CdTe(1-x)Se(x) QDs compared with CdTe QDs confirmed the formation of an alloy structure. The Se component drastically affected the stability of CdTe(1-x)Se(x) QDs. A Cd0.5Zn0.5S shell coating on CdTe(1-x)Se(x) cores was carried out using oleic acid as a capping agent. CdTe(1-x)Se(x)/Cd0.5Zn0.5S core/shell QDs revealed dark red PL while a yellow PL peak was observed for the CdTe(1-x)Se(x) cores. The PL efficiency of the core/shell QDs was drastically increased (less than 1% for the cores and up to 65% for the core/shell QDs). The stability of QDs in various buffer solutions was investigated. Core/shell QDs can be used for biological applications because of their high stability, tunable PL and high PL efficiency.


Assuntos
Substâncias Luminescentes/química , Pontos Quânticos/química , Compostos de Cádmio/química , Luminescência , Selênio/química , Propriedades de Superfície , Telúrio/química
10.
Luminescence ; 29(4): 386-92, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23868821

RESUMO

In this study, a series of LaNbTiO6:RE(3+) (RE = Tb, Dy, Ho) down-converting phosphors were synthesized using a modified sol-gel combustion method, and their photoluminescence (PL) properties were investigated as a function of activator concentration and annealing temperature. The resultant particles were characterized using X-ray diffraction, transmission electron microscopy, scanning electron microscopy, UV/Vis diffuse reflectance spectroscopy and PL spectra. The highly crystalline LaNbTiO6:RE(3+) (RE = Tb, Dy, Ho) phosphors with an average size of 200-300 nm obtained at 1100°C have an orthorhombic aeschynite-type structure and exhibit the highest luminescent intensity in our study range. The emission spectra of LaNbTiO6:RE(3+) (RE = Tb, Dy, Ho) phosphors under excitations at UV/blue sources are mainly composed of characteristic peaks arising from the f-f transitions of RE(3+), including 489 nm ((5) D4 → (7) F6) and 545 nm ((5) D4 → (7) F5) for Tb(3+), 476 and 482 nm ((4) F9/2 → (6) H15/2) and 571 nm ((4) F9/2 → (6) H13/2) for Dy(3+), and 545 nm ((5) F4 + (5) S2 → (5) I8) for Ho(3+), respectively. The luminescent mechanisms were further investigated. It can be expected that these phosphors are of intense interest and potential importance for many optical applications.


Assuntos
Disprósio/química , Substâncias Luminescentes/química , Luminescência , Medições Luminescentes , Tamanho da Partícula , Difração de Raios X
11.
Sci Total Environ ; 923: 171509, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460689

RESUMO

A vital approach to attaining sustainable development lies in the in-depth examination of both competition and synergy between these subsystems from a water-food-ecology (WFE) system perspective, while previous or existing studies have limitations in to quantitative characterize and evaluation the cooperative and competitive relationships between different systems. In this study, an evaluation indicator system is constructed from the two dimensions of resources and efficiency, and the WFE synergic development capacity (WFE-SDC) is proposed by integrating the order degree of the coupled system, enables a multidimensional and comprehensive quantitative assessment of the sustainable development of the WFE system. Then a synergic evolution model is constructed to explore the competitive and synergic evolution of the WFE system in the Beijing-Tianjin-Hebei region. The following key insights were obtained: (1) The WFE-SDC (range of 0-1) shows a fluctuating increase, indicating a shift from mild dysfunctional recession to intermediate synergic development (0.24 to 0.72). (2) Principal factors impeding WFE-SDC encompass diversion water, ecology water consumption, grain demand, reclaimed water consumption, and outbound water, both come from resource dimension, with a combined impediment degree of over 46 %, and the improvement of efficiency dimension may improve the WFE-SDC. (3) The water subsystem acts as a driving force for synergic development, fostering cooperation within the food and ecology subsystems, although they mainly operate in a competitive state. (4) Within the WFE system, Beijing, Tianjin, and Hebei exhibited mutual cooperation and significantly contributed to one another's development. Beijing has played a pivotal role in the progress of both Tianjin and Hebei. This study offers valuable insights for the formulation of policies and the application of technical approaches for the sustainable development of the WFE system in relevant regions.

12.
J Fluoresc ; 23(6): 1247-54, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23873206

RESUMO

Alloyed semiconductor quantum dots (QDs) enriched the synthetic routes for engineering materials with unique structural and optical properties. High-quality thiol-stabilized CdTe(x)Se(1-x) alloyed QDs were synthesized through a facile and economic hydrothermal method at 120 °C, a relatively low temperature. These water-soluble QDs were prepared using different capping agents including 3-mercaptopropionic acid (MPA) and L-cysteine (L-Cys). The photoluminescence (PL) intensity and stability of L-Cys-capped CdTe(x)Se(1-x) QDs were found to be higher than that of MPA-stabilized ones. The molar ratios of Se-to-Te upon preparation were adjusted for investigating the effect of composition on the properties of the resulting QDs. We also investigated the effect of the pH value of the reaction solution on the growth kinetics of the alloyed CdTe(x)Se(1-x) QDs. The resulting CdTe(x)Se(1-x) QDs were characterized by UV-vis absorbance and PL spectroscopy, powder X-ray diffraction, and transmission electron microscopy. Being coated with a CdS inorganic shell, the PL intensity and stability of the CdTe(x)Se(1-x)/CdS core-shell QDs were drastically enhanced, accompanied by the red-shift of the PL peak wavelength. Owing to the unique optical properties, the QDs hold great potential for application and have to be further exploited.

13.
Luminescence ; 28(3): 287-93, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23427119

RESUMO

A new ion sensor based on hybrid SiO2 -coated CdTe nanocrystals (NCs) was prepared and applied for sensitive sensing of Cu(2+) and Ag(+) for the selective quenching of photoluminescence (PL) of NCs in the presence of ions. As shown by ion detection experiments conducted in pure water rather than buffer solution, PL responses of NCs were linearly proportional to concentrations of Cu(2+) and Ag(+) ions < 3 and 7 uM, respectively. Much lower detection limits of 42.37 nM for Cu(2+) and 39.40 nM for Ag(+) were also observed. In addition, the NC quenching mechanism was discussed in terms of the characterization of static and transient optical spectra. The transfer and trapping of photoinduced charges in NCs by surface energy levels of CuS and Ag2 S clusters as well as surface defects generated by the exchange of Cu(2+) and Ag(+) ions with Cd(2+) ion in NCs, resulted in PL quenching and other optical spectra changes, including steady-state absorption and transient PL spectra. It is our hope that these results will be helpful in the future preparation of new ion sensors.


Assuntos
Cádmio/química , Cobre/análise , Medições Luminescentes/métodos , Nanopartículas/química , Dióxido de Silício/química , Prata/análise , Telúrio/química , Poluentes Químicos da Água/análise , Íons/análise , Medições Luminescentes/instrumentação
14.
Anal Methods ; 15(3): 275-283, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36594811

RESUMO

Rapid and sensitive quantification of pathogenic bacteria is highly desired for environmental health supervision and food safety control. Yet, the amplification and detection of bacteria with a concentration lower than 102 cfu mL-1 remains a great challenge. Here, we combined an allosteric aptamer (AAP) with a gold nanoparticle (AuNP) for assembling a bridge-DNA synthesis system (named as AuNP-BDS) to amplify the bacterial signals. The AAP and its paired primer (PP) were covalently linked to two different AuNPs, respectively: one named as AAP-AuNP and the other PP-AuNP. Upon recognition of the antigen from the pathogenic bacteria, AAP alters its conformation to initiate DNA synthesis on the AuNP surface. The DNA products from AAP-AuNP and PP-AuNP form bridges to each other through base pairing, resulting in the aggregation and colorimetric response of the AuNPs. By using E. coli O157:H7 as an example, the AuNP-BDS could quantify pathogenic bacteria in water with a concentration as low as 10 cfu mL-1 within 60 min and without any enrichment. The colorimetric response values of AuNP-BDS were found to be linearly related to the bacterial concentrations in the range of 10 to 103 cfu mL-1. Good practicability of the AuNP-BDS in quantifying E. coli O157:H7 from tap water, juices, and milks was demonstrated. The AuNP-BDS could be exploited to facilitate the rapid and sensitive quantification of pathogenic bacteria for food safety control.


Assuntos
Escherichia coli O157 , Nanopartículas Metálicas , Ouro , Colorimetria , Escherichia coli O157/genética
15.
Bioact Mater ; 21: 450-463, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36185742

RESUMO

The regeneration of alveolar bone after tooth extraction is critical for the placement of dental implants. Developing a rigid porous scaffold with defect shape adaptability is of great importance but challenging for alveolar bone regeneration. Herein, we design and synthesize a biocompatible poly(l-glutamic acid)-g-poly(ε-caprolactone) (PLGA-g-PCL) porous shape memory (SM) polymer. The PLGA-g-PCL is then copolymerized with acryloyl chloride grafted poly(ω-pentadecalactone) (PPDLDA) having a higher phase transition temperature than shape recovery temperature to maintain stiffness after shape recovery to resist chewing force. The hybrid polydopamine/silver/hydroxyapatite (PDA/Ag/HA) is coated to the surface of (PLGA-g-PCL)-PPDL scaffold to afford the anti-bacterial activity. The porous SM scaffold can be deformed into a compact size and administered into the socket cavity in a minimally invasive mode, and recover its original shape with a high stiffness at body temperature, fitting well in the socket defect. The SM scaffold exhibits robust antibacterial activity against Staphylococcus aureus (S. aureus). The porous microstructure and cytocompatibility of PLGA allow for the ingrowth and proliferation of stem cells, thus facilitating osteogenic differentiation. The micro-CT and histological analyses demonstrate that the scaffold boosts efficient new bone regeneration in the socket of rabbit mandibular first premolar. This porous shape memory self-adaptive stiffened polymer opens up a new avenue for alveolar bone regeneration.

16.
Front Plant Sci ; 14: 1265574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877078

RESUMO

Soybean (Glycine max) productivity is significantly reduced by drought stress. Breeders are aiming to improve soybean grain yields both under well-watered (WW) and drought-stressed (DS) conditions, however, little is known about the genetic architecture of yield-related traits. Here, a panel of 188 soybean germplasm was used in a genome wide association study (GWAS) to identify single nucleotide polymorphism (SNP) markers linked to yield-related traits including pod number per plant (PN), biomass per plant (BM) and seed weight per plant (SW). The SLAF-seq genotyping was conducted on the population and three phenotype traits were examined in WW and DS conditions in four environments. Based on best linear unbiased prediction (BLUP) data and individual environmental analyses, 39 SNPs were significantly associated with three soybean traits under two conditions, which were tagged to 26 genomic regions by linkage disequilibrium (LD) analysis. Of these, six QTLs qPN-WW19.1, qPN-DS8.8, qBM-WW1, qBM-DS17.4, qSW-WW4 and qSW-DS8 were identified controlling PN, BM and SW of soybean. There were larger proportions of favorable haplotypes for locus qPN-WW19.1 and qSW-WW4 rather than qBM-WW1, qBM-DS17.4, qPN-DS8.8 and qSW-DS8 in both landraces and improved cultivars. In addition, several putative candidate genes such as Glyma.19G211300, Glyma.17G057100 and Glyma.04G124800, encoding E3 ubiquitin-protein ligase BAH1, WRKY transcription factor 11 and protein zinc induced facilitator-like 1, respectively, were predicted. We propose that the further exploration of these locus will facilitate accelerating breeding for high-yield soybean cultivars.

17.
Food Chem X ; 18: 100699, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37215197

RESUMO

Generally, gelatin was irreversibly cross-linked by chemical reagents to improve its water-resistance. However, few chemical reagents meet both the requirements of high cross-inking efficiency and tunable degradation. Here a reversible cross-linker, disulphide-containing bis-succinimide, was synthesized and used to control the cross-linking and degradation of edible gelatin film. Mixture of the gelatin and cross-linker for 120 min generated gelatin films that could preserve their morphology in 37 ℃ warm water for above 40 days. The gelatin film changed its microstructure from net to tightness after the cross-linking, thus facilitating the embedding of the targeted molecule into the gelatin material. The degradation of the cross-linked gelatin film and the release of its inclusion could be controlled by biocompatible glutathione. This work provides a good method for preparing modified gelatin with promising water-resistance, good biocompatibility, and tunable degradation for food/biomedical engineering applications.

18.
Sci Total Environ ; 900: 165830, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37506920

RESUMO

Particulate matter (PM) is a major source of urban air pollution that poses a serious threat to the environment and human health. This study quantified the dry deposition effect of PM2.5 and PM10 on vegetation using a mathematical model to overcome the limitations of traditional site-scale research. Additionally, multi-source satellite remote sensing products were combined to form a raster dataset to estimate the effect of dry deposition on PM2.5 and PM10 in China's urban green spaces from 2000 to 2020. The spatial and temporal changes in the long-term series were analyzed, and the influence of environmental factors on dry deposition was analyzed in combination with wavelet changes. The experimental results showed that: 1) from 2000 to 2020, the dry deposition effect of PM2.5 and PM10 on vegetation showed an initial increasing and then decreasing trend caused by the sudden drop in atmospheric pollutant particle concentration driven by local policies; 2) broad-leaved forests provided the main dry deposition effects in urban spaces, accounting for 89.22 %, indicating a need to increase the density of these forest types in urban development planning to improve air quality; and 3) PM2.5, PM10, and environmental impact factors have time-frequency scale coherences, and the coherence between PM2.5 reduction and these factors is more complex than that of PM10, with precipitation being the best variable to explain the change in PM2.5 and PM10. These findings are important for the prevention and control of urban air pollution, regional planning of green spaces, and sustainable development of cities.

19.
BMC Genomics ; 13: 276, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22726496

RESUMO

BACKGROUND: Lepidoptera encompasses more than 160,000 described species that have been classified into 45-48 superfamilies. The previously determined Lepidoptera mitochondrial genomes (mitogenomes) are limited to six superfamilies of the lineage Ditrysia. Compared with the ancestral insect gene order, these mitogenomes all contain a tRNA rearrangement. To gain new insights into Lepidoptera mitogenome evolution, we sequenced the mitogenomes of two ghost moths that belong to the non-ditrysian lineage Hepialoidea and conducted a comparative mitogenomic analysis across Lepidoptera. RESULTS: The mitogenomes of Thitarodes renzhiensis and T. yunnanensis are 16,173 bp and 15,816 bp long with an A + T content of 81.28 % and 82.34 %, respectively. Both mitogenomes include 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and the A + T-rich region. Different tandem repeats in the A + T-rich region mainly account for the size difference between the two mitogenomes. All the protein-coding genes start with typical mitochondrial initiation codons, except for cox1 (CGA) and nad1 (TTG) in both mitogenomes. The anticodon of trnS(AGN) in T. renzhiensis and T. yunnanensis is UCU instead of the mostly used GCU in other sequenced Lepidoptera mitogenomes. The 1,584-bp sequence from rrnS to nad2 was also determined for an unspecified ghost moth (Thitarodes sp.), which has no repetitive sequence in the A + T-rich region. All three Thitarodes species possess the ancestral gene order with trnI-trnQ-trnM located between the A + T-rich region and nad2, which is different from the gene order trnM-trnI-trnQ in all previously sequenced Lepidoptera species. The formerly identified conserved elements of Lepidoptera mitogenomes (i.e. the motif 'ATAGA' and poly-T stretch in the A + T-rich region and the long intergenic spacer upstream of nad2) are absent in the Thitarodes mitogenomes. CONCLUSION: The mitogenomes of T. renzhiensis and T. yunnanensis exhibit unusual features compared with the previously determined Lepidoptera mitogenomes. Their ancestral gene order indicates that the tRNA rearrangement event(s) likely occurred after Hepialoidea diverged from other lepidopteran lineages. Characterization of the two ghost moth mitogenomes has enriched our knowledge of Lepidoptera mitogenomes and contributed to our understanding of the mechanisms underlying mitogenome evolution, especially gene rearrangements.


Assuntos
Ordem dos Genes/genética , Genes de Insetos/genética , Genoma Mitocondrial/genética , Lepidópteros/genética , Mariposas/genética , Animais
20.
J Fluoresc ; 22(1): 121-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21850430

RESUMO

CdTe quantum dots (QDs) were prepared in an aqueous solution using various mercaptocarboxylic acids, such as 3-mercaptopropionic acid (MPA) and thioglycolic acid (TGA), as stabilizing agents. The experimental result indicated that these stabilizing agents played an important role for the properties of the QDs. Although both TGA and MPA-capped CdTe QDs exhibited the tunable photoluminescence (PL) from green to red color, the TGA-capped QDs revealed a higher PL quantum yield (QY) up to 60% than that of MPA-capped QDs (up to 50%) by using the optimum preparation conditions, such as a pH value of ~11.2 and a TGA/Cd molar ratio of 1.5. PL lifetime measurements indicate that the TGA-capped QDs exhibited a short average lifetime while the MPA-capped QDs revealed a long one. Furthermore, the average lifetime of the TGA-capped QDs increased with the increase of the QDs size, while a decreased lifetime for the MPA-capped QDs was obtained. This means that the PL lifetime depended strongly on the surface state of the CdTe QDs. These results should be utilized for the preparation and applications of QDs.


Assuntos
Compostos de Cádmio/química , Ácidos Carboxílicos/química , Substâncias Luminescentes/química , Pontos Quânticos , Telúrio/química , Medições Luminescentes , Fenômenos Ópticos , Tamanho da Partícula , Tioglicolatos/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA