Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 49(2): 517-526, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34232350

RESUMO

PURPOSE: In PSMA-ligand PET/CT imaging, standardized evaluation frameworks and image-derived parameters are increasingly used to support prostate cancer staging. Clinical applicability remains challenging wherever manual measurements of numerous suspected lesions are required. Deep learning methods are promising for automated image analysis, typically requiring extensive expert-annotated image datasets to reach sufficient accuracy. We developed a deep learning method to support image-based staging, investigating the use of training information from two radiotracers. METHODS: In 173 subjects imaged with 68Ga-PSMA-11 PET/CT, divided into development (121) and test (52) sets, we trained and evaluated a convolutional neural network to both classify sites of elevated tracer uptake as nonsuspicious or suspicious for cancer and assign them an anatomical location. We evaluated training strategies to leverage information from a larger dataset of 18F-FDG PET/CT images and expert annotations, including transfer learning and combined training encoding the tracer type as input to the network. We assessed the agreement between the N and M stage assigned based on the network annotations and expert annotations, according to the PROMISE miTNM framework. RESULTS: In the development set, including 18F-FDG training data improved classification performance in four-fold cross validation. In the test set, compared to expert assessment, training with 18F-FDG data and the development set yielded 80.4% average precision [confidence interval (CI): 71.1-87.8] for identification of suspicious uptake sites, 77% (CI: 70.0-83.4) accuracy for anatomical location classification of suspicious findings, 81% agreement for identification of regional lymph node involvement, and 77% agreement for identification of metastatic stage. CONCLUSION: The evaluated algorithm showed good agreement with expert assessment for identification and anatomical location classification of suspicious uptake sites in whole-body 68Ga-PSMA-11 PET/CT. With restricted PSMA-ligand data available, the use of training examples from a different radiotracer improved performance. The investigated methods are promising for enabling efficient assessment of cancer stage and tumor burden.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Ácido Edético , Isótopos de Gálio , Radioisótopos de Gálio , Humanos , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia
2.
J Nucl Med ; 62(1): 30-36, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32532925

RESUMO

Total metabolic tumor volume (TMTV), calculated from 18F-FDG PET/CT baseline studies, is a prognostic factor in diffuse large B-cell lymphoma (DLBCL) whose measurement requires the segmentation of all malignant foci throughout the body. No consensus currently exists regarding the most accurate approach for such segmentation. Further, all methods still require extensive manual input from an experienced reader. We examined whether an artificial intelligence-based method could estimate TMTV with a comparable prognostic value to TMTV measured by experts. Methods: Baseline 18F-FDG PET/CT scans of 301 DLBCL patients from the REMARC trial (NCT01122472) were retrospectively analyzed using a prototype software (PET Assisted Reporting System [PARS]). An automated whole-body high-uptake segmentation algorithm identified all 3-dimensional regions of interest (ROIs) with increased tracer uptake. The resulting ROIs were processed using a convolutional neural network trained on an independent cohort and classified as nonsuspicious or suspicious uptake. The PARS-based TMTV (TMTVPARS) was estimated as the sum of the volumes of ROIs classified as suspicious uptake. The reference TMTV (TMTVREF) was measured by 2 experienced readers using independent semiautomatic software. The TMTVPARS was compared with the TMTVREF in terms of prognostic value for progression-free survival (PFS) and overall survival (OS). Results: TMTVPARS was significantly correlated with the TMTVREF (ρ = 0.76; P < 0.001). Using PARS, an average of 24 regions per subject with increased tracer uptake was identified, and an average of 20 regions per subject was correctly identified as nonsuspicious or suspicious, yielding 85% classification accuracy, 80% sensitivity, and 88% specificity, compared with the TMTVREF region. Both TMTV results were predictive of PFS (hazard ratio, 2.3 and 2.6 for TMTVPARS and TMTVREF, respectively; P < 0.001) and OS (hazard ratio, 2.8 and 3.7 for TMTVPARS and TMTVREF, respectively; P < 0.001). Conclusion: TMTVPARS was consistent with that obtained by experts and displayed a significant prognostic value for PFS and OS in DLBCL patients. Classification of high-uptake regions using deep learning for rapidly discarding physiologic uptake may considerably simplify TMTV estimation, reduce observer variability, and facilitate the use of TMTV as a predictive factor in DLBCL patients.


Assuntos
Aprendizado Profundo , Fluordesoxiglucose F18/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Linfoma Difuso de Grandes Células B/diagnóstico por imagem , Linfoma Difuso de Grandes Células B/metabolismo , Tomografia por Emissão de Pósitrons , Carga Tumoral , Adulto , Idoso , Transporte Biológico , Estudos de Coortes , Feminino , Humanos , Linfoma Difuso de Grandes Células B/patologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA