Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38793478

RESUMO

We present a macroscale constitutive model that couples magnetism with thermal, elastic, plastic, and damage effects in an Internal State Variable (ISV) theory. Previous constitutive models did not include an interdependence between the internal magnetic (magnetostriction and magnetic flux) and mechanical fields. Although constitutive models explaining the mechanisms behind mechanical deformations caused by magnetization changes have been presented in the literature, they mainly focus on nanoscale structure-property relations. A fully coupled multiphysics macroscale ISV model presented herein admits lower length scale information from the nanoscale and microscale descriptions of the multiphysics behavior, thus capturing the effects of magnetic field forces with isotropic and anisotropic magnetization terms and moments under thermomechanical deformations. For the first time, this ISV modeling framework internally coheres to the kinematic, thermodynamic, and kinetic relationships of deformation using the evolving ISV histories. For the kinematics, a multiplicative decomposition of deformation gradient is employed including a magnetization term; hence, the Jacobian represents the conservation of mass and conservation of momentum including magnetism. The first and second laws of thermodynamics are used to constrain the appropriate constitutive relations through the Clausius-Duhem inequality. The kinetic framework employs a stress-strain relationship with a flow rule that couples the thermal, mechanical, and magnetic terms. Experimental data from the literature for three different materials (iron, nickel, and cobalt) are used to compare with the model's results showing good correlations.

2.
Sci Adv ; 6(31): eaba8437, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32832684

RESUMO

The nondestructive investigation of single vacancies and vacancy clusters in ion-irradiated samples requires a depth-resolved probe with atomic sensitivity to defects. The recent development of short-pulsed positron beams provides such a probe. Here, we combine depth-resolved Doppler broadening and positron annihilation lifetime spectroscopies to identify vacancy clusters in ion-irradiated Fe and measure their density as a function of depth. Despite large concentrations of dislocations and voids in the pristine samples, positron annihilation measurements uncovered the structure of vacancy clusters and the change in their size and density with irradiation dose. When combined with transmission electron microscopy measurements, the study demonstrates an association between the increase in the density of small vacancy clusters with irradiation and a remarkable reduction in the size of large voids. This, previously unknown, mechanism for the interaction of cascade damage with voids in ion-irradiated materials is a consequence of the high porosity of the initial microstructure.

3.
Sci Rep ; 9(1): 3846, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846788

RESUMO

Hexagonal close packed (HCP) Mg and Zr are being used in transportation and nuclear industries, respectively. The ductility and formability of these materials is significantly limited by the activation of prevalent deformation twinning. Twins in HCP polycrystals usually nucleate at grain boundaries (GBs), propagate into the grain, and they either terminate at opposing GBs (isolated-twins) or transmit into a neighboring grain (adjoining-twin-pairs: ATPs). Because twin interfaces provide a path for crack propagation, twin transmission is relevant to material ductility. This study combines electron backscatter diffraction (EBSD) based statistical analysis of twinning microstructures and crystal plasticity modeling, to characterize twin thickening processes away from and near GBs. Analysis of deformed Mg and Zr microstructures reveals that local twin thicknesses at GBs are statistically larger for ATPs compared to isolated-twins. Further, thicknesses are found to decrease with increasing GB misorientation angle. Full-field Fast-Fourier-Transform micromechanics modeling shows that shear-transformation induced backstress are locally relaxed at GBs for ATPs, but not for isolated-twins. As a consequence, ATPs can thicken locally at GBs and the preferential site for twin thickening shifts from the middle of the twin to common GB.

4.
Nat Commun ; 9(1): 4761, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420672

RESUMO

Pervasive deformation twinning in magnesium greatly affects its strength and formability. The local stress fields associated with twinning play a key role on deformation behavior and fracture but are extremely difficult to characterize experimentally. In this study, we perform synchrotron experiments with differential-aperture X-ray microscopy to measure the 3D stress fields in the vicinity of a twin with a spatial resolution of 0.5 micrometer. The measured local stress field aids to identify the sequence of events involved with twinning. We find that the selected grain deforms elastically before twinning, and the twin formation splits the grain into two non-interacting domains. Under further straining one domain of the grain continued to deform elastically, whereas the other domain deforms plastically by prismatic slip. This heterogeneous deformation behavior may be mediated by the surrounding medium and it is likely to lead to asymmetric twin growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA