Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Int Microbiol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867105

RESUMO

Hydrocarbon and heavy metal pollution are amongst the most severe and prevalent environmental problems due to their toxicity and persistence. Bioremediation using microorganisms is considered one of the most effective ways to treat polluted sites. In the present study, we unveil the bioremediation potential of Brucella pituitosa strain BU72. Besides its ability to grow on multiple hydrocarbons as the sole carbon source and highly tolerant to several heavy metals, BU72 produces different exopolysaccharide-based surfactants (EBS) when grown with glucose or with crude oil as sole carbon source. These EBS demonstrated particular and specific functional groups as determined by Fourier transform infrared (FTIR) spectral analysis that showed a strong absorption peak at 3250 cm-1 generated by the -OH group for both EBS. The FTIR spectra of the produced EBS revealed major differences in functional groups and protein content. To better understand the EBS production coupled with the degradation of hydrocarbons and heavy metal resistance, the genome of strain BU72 was sequenced. Annotation of the genome revealed multiple genes putatively involved in EBS production pathways coupled with resistance to heavy metals genes such as arsenic tolerance and cobalt-zinc-cadmium resistance. The genome sequence analysis showed the potential of BU72 to synthesise secondary metabolites and the presence of genes involved in plant growth promotion. Here, we describe the physiological, metabolic, and genomic characteristics of Brucella pituitosa strain BU72, indicating its potential as a bioremediation agent.

2.
Molecules ; 27(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956804

RESUMO

World population growth, with the consequent consumption of primary resources and production of waste, is progressively and seriously increasing the impact of anthropic activities on the environment and ecosystems. Environmental pollution deriving from anthropogenic activities is nowadays a serious problem that afflicts our planet and that cannot be neglected. In this regard, one of the most challenging tasks of the 21st century is to develop new eco-friendly, sustainable and economically-sound technologies to remediate the environment from pollutants. Nanotechnologies and new performing nanomaterials, thanks to their unique features, such as high surface area (surface/volume ratio), catalytic capacity, reactivity and easy functionalization to chemically modulate their properties, represent potential for the development of sustainable, advanced and innovative products/techniques for environmental (bio)remediation. This review discusses the most recent innovations of environmental recovery strategies of polluted areas based on different nanocomposites and nanohybrids with some examples of their use in combination with bioremediation techniques. In particular, attention is focused on eco-friendly and regenerable nano-solutions and their safe-by-design properties to support the latest research and innovation on sustainable strategies in the field of environmental (bio)remediation.


Assuntos
Poluentes Ambientais , Nanocompostos , Biodegradação Ambiental , Ecossistema , Poluentes Ambientais/química , Nanotecnologia/métodos
3.
Curr Microbiol ; 77(11): 3414-3421, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32740715

RESUMO

The peculiar biotechnological applications of Oleispira spp. in the natural cleansing of oil-polluted marine systems stimulated the study of the phenotypic characteristics of the Oleispira antarctica RB-8(T) strain and modifications of these characteristics in relation to different growth conditions. Bacterial abundance, cell size and morphology variations (by image analysis) and hydrocarbon degradation (by gas chromatography with flame ionization detection, GC-FID) were analysed in different cultures of O. antarctica RB-8(T). The effects of six different hydrocarbon mixtures (diesel, engine oil, naval oil waste, bilge water, jet fuel and oil) used as a single carbon source combined with two different growth temperatures (4° and 15 °C) were analysed (for 22 days). The data obtained showed that the mean cell volume decreased with increasing experimental temperature. Three morphological bacterial shapes were identified: spirals, rods and cocci. Morphological transition from spiral to rod and coccoid shapes in relation to the different substrates (oil mixtures) and/or growth temperatures was observed, except for one experimental condition (naval oil waste) in which spiral bacteria were mostly dominant. Phenotypic traits and physiological status of hydrocarbon-degrading bacteria showed important modifications in relation to culture conditions. These findings suggest interesting potential for strain RB-8(T) for ecological and applicative purposes.


Assuntos
Oceanospirillaceae , Bactérias/genética , Biodegradação Ambiental , Variação Biológica da População
4.
Ecotoxicology ; 26(3): 396-404, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28188591

RESUMO

Investigations on asymmetries showed that deviations from perfect bilateral symmetry are interpreted as environmental changes inducing developmental instability. Since morphological abnormalities increase with pollution, deformations may be considered indicators of the organism exposition to pollution. Therefore, the onset of asymmetry in otherwise normally symmetrical traits has been used as a measure of some stresses as well. In this context, we studied how marine pollution affects the valve morphological alterations in the mussel Mytilus galloprovincialis. We used 180 specimens (30 per site) from the aquaculture area of Goro (River Po delta, northern Adriatic Sea), translocated, and released within 50 × 50 × 50 cm cages in five sites: two disturbed and one undisturbed near Naples (eastern Tyrrhenian Sea), and one disturbed and one undisturbed near Siracusa (western Ionian Sea). Disturbed sites were stressed by heavy industrialization and heavy tankers traffic of crude and refined oil, and were defined basing on sediment contamination. In particular, by the cone-beam computed tomography we obtained 3D virtual valve surfaces to be analyzed by the geometric morphometric techniques. Specifically, we focused the levels of the shell shape fluctuating asymmetry in relation to the degrees of marine pollution in different sites of the Tyrrhenian Sea. The Mahalanobis distances (interpreted as proxy of the individual shape asymmetry deviation from the mean asymmetry) significantly regressed with the sediment contamination gradient. Indeed, although the left-right differences were normally distributed in each studied site, the individual asymmetry scores (IAS) significantly varied amongst the investigated sites. IAS showed higher values in disturbed areas than those of undisturbed ones in both Tyrrhenian and Ionian Sea. Our results are consistent with past studies on molluscans and other taxa, demonstrating some detrimental effects of chemicals on organisms, although the investigated morphological marker did not discriminate the real disturbance source. Our findings indicate that the mussels act as a prognostic tool for sea pollution levels driving detrimental effects on benthic community.


Assuntos
Exoesqueleto/anatomia & histologia , Monitoramento Ambiental/métodos , Mytilus/anatomia & histologia , Poluição da Água/análise , Exoesqueleto/efeitos dos fármacos , Animais , Aquicultura , Biomarcadores , Mytilus/fisiologia
5.
J Environ Manage ; 203(Pt 2): 817-824, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27449961

RESUMO

In the present study, chemical oxygen demand (COD) removal by coagulation and packed-columns of both fresh and bioregenerated granular activated carbon (GAC) is reported as a feasible treatment for saline and oily wastewaters (slops) generated from marine oil tankers cleaning. The use of Ferric chloride (FeCl3), Aluminium sulphate (Al2(SO4)3) and Polyaluminum chloride (Al2(OH3)Cl3) was evaluated in the pre-treatment by coagulation of a real slop, after a de-oiling phase in a tank skimmer Comparison of coagulation process indicated that Polyaluminum chloride and Aluminium sulphate operate equally well (20-30% of COD removal) when applied at their optimal dose (40 and 90 mg/l respectively) but the latter should be preferred in order to significantly control the sludge production. The results from the column filtration tests indicated the feasibility of using the selected GAC (Filtrasorb 400 -Calgon Carbon Corporation) to achieve the respect of the discharge limits in the slops treatment with a carbon usage rate in the range 0.1-0.3 kg/m3 of treated effluent. Moreover, biological regeneration through Alcalinovorax borkumensis SK2 was proved to be a cost-effective procedure since the reuse of spent GAC through such regeneration process for further treatment could still achieve approximately 90% of the initial sorption capacity, reducing then costs for the use of new sorbents and also the need for waste disposal.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Carvão Vegetal , Filtração , Esgotos
6.
Crit Rev Microbiol ; 42(6): 883-904, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26585708

RESUMO

The EU Marine Strategy Framework Directive 2008/56/EC (MSFD) defines a framework for Community actions in the field of marine environmental policy in order to achieve and/or maintain the Good Environmental Status (GES) of the European seas by 2020. Microbial assemblages (from viruses to microbial-sized metazoa) provide a major contribution to global biodiversity and play a crucial role in the functioning of marine ecosystems, but are largely ignored by the MSFD. Prokaryotes are only seen as "microbial pathogens," without defining their role in GES indicators. However, structural or functional prokaryotic variables (abundance, biodiversity and metabolism) can be easily incorporated into several MSFD descriptors (i.e. D1. biodiversity, D4. food webs, D5. eutrophication, D8. contaminants and D9. contaminants in seafood) with beneficial effects. This review provides a critical analysis of the current MSFD descriptors and illustrates the reliability and advantages of the potential incorporation of some prokaryotic variables within the set of indicators of marine environmental quality. Following a cost/benefit analysis against scientific and economic criteria, we conclude that marine microbial components, and particularly prokaryotes, are highly effective for detecting the effects of anthropogenic pressures on marine environments and for assessing changes in the environmental health status. Thus, we recommend the inclusion of these components in future implementations of the MSFD.


Assuntos
Bactérias/classificação , Água do Mar/microbiologia , Água do Mar/virologia , Vírus/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Europa (Continente) , Oceanos e Mares , Filogenia , Vírus/genética , Vírus/isolamento & purificação
7.
J Environ Sci (China) ; 43: 136-146, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27155418

RESUMO

In order to better understand the effects of biostimulation and bioaugmentation processes on a marine microbial community, three different mesocosm experiments were planned. Natural seawater (10.000L) was artificially polluted with crude oil (1L) and (1) inorganic nutrients (Biostimulating Mesocosm, BM), (2) inorganic nutrients and an inoculum of Alcanivorax borkumensis SK2 (Single Bioaugmentation Mesocosm, SBM), (3) inorganic nutrients and inoculums of A. borkumensis SK2 and Thalassolituus oleivorans MIL-1 (Consortium Bioaugmentation Mesocosm, CBM). During the experimental period (20days), samples were taken from each mesocosm and the community structure was analyzed by PCR-DGGE. The 16S rRNA gene DGGE banding patterns and sequence analysis demonstrated that biostimulation had the lowest effect on microbial biodiversity in the mesocosms; however, the biodiversity of the marine microbial community dramatically decreased in the CBM (Shannon index was 0.6 in T3). The community structures among the three mesocosms were also markedly different, and major bacteria derived from DGGE bands were related to uncultured Gamma Proteobacteria. The biodegradation results show that the Single Bioaugmentation Mesocosm (SBM) system had the highest percentage of degradation (95%) in comparison to the BM mesocosm (80%) and CBM (70%).


Assuntos
Água do Mar/microbiologia , Microbiologia da Água , Biodegradação Ambiental , Reação em Cadeia da Polimerase , Água do Mar/química , Poluentes Químicos da Água/metabolismo
8.
Proteomics ; 15(20): 3508-20, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26201687

RESUMO

Crude oil is one of the most important natural assets for humankind, yet it is a major environmental pollutant, notably in marine environments. One of the largest crude oil polluted areas in the word is the semi-enclosed Mediterranean Sea, in which the metabolic potential of indigenous microbial populations towards the large-scale chronic pollution is yet to be defined, particularly in anaerobic and micro-aerophilic sites. Here, we provide an insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy: the Priolo oil terminal/refinery site (near Siracuse, Sicily), harbour of Messina (Sicily) and shipwreck of MT Haven (near Genoa). Using shotgun metaproteomics and community metabolomics approaches, the presence of 651 microbial proteins and 4776 metabolite mass features have been detected in these three environments, revealing a high metabolic heterogeneity between the investigated sites. The proteomes displayed the prevalence of anaerobic metabolisms that were not directly related with petroleum biodegradation, indicating that in the absence of oxygen, biodegradation is significantly suppressed. This suppression was also suggested by examining the metabolome patterns. The proteome analysis further highlighted the metabolic coupling between methylotrophs and sulphate reducers in oxygen-depleted petroleum-polluted sediments.


Assuntos
Metabolômica , Poluição por Petróleo , Proteômica , Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Itália , Mar Mediterrâneo , Petróleo/toxicidade , Microbiologia da Água
9.
Environ Monit Assess ; 187(10): 642, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26403705

RESUMO

Here, we describe the methodologies adopted to ensure that natural seawater, used as "influent water" for the land test, complies with the requirement that should be fulfilled to show the efficacy of the new ballast water treatment system (BWTS). The new BWTS was located on the coast of SW Sicily (Italy), and the sampled seawater showed that bacteria and plankton were two orders of magnitude lower than requested. Integrated approaches for preparation of massive cultures of bacteria (Alcanivorax borkumensis and Marinobacter hydrocarbonoclasticus), algae (Tetraselmis suecica), rotifers (Brachionus plicatilis), and crustaceans (Artemia salina) suitable to ensure that 200 m(3) of water fulfilled the international guidelines of MEPC.174(58)G8 are here described. These methodologies allowed us to prepare the "influent water" in good agreement with guidelines and without specific problems arising from natural conditions (seasons, weather, etc.) which significantly affect the concentrations of organisms at sea. This approach also offered the chance to reliably run land tests once every two weeks.


Assuntos
Cinamatos/química , Água do Mar , Navios/normas , Purificação da Água/métodos , Alcanivoraceae/crescimento & desenvolvimento , Animais , Artemia/crescimento & desenvolvimento , Clorófitas/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Desenho de Equipamento , Guias como Assunto , Rotíferos/crescimento & desenvolvimento , Água do Mar/análise , Água do Mar/microbiologia , Sicília , Purificação da Água/instrumentação
10.
BMC Microbiol ; 14: 136, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24884866

RESUMO

BACKGROUND: The red palm weevil (RPW) Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) is one of the major pests of palms. The larvae bore into the palm trunk and feed on the palm tender tissues and sap, leading the host tree to death. The gut microbiota of insects plays a remarkable role in the host life and understanding the relationship dynamics between insects and their microbiota may improve the biological control of insect pests. The purpose of this study was to analyse the diversity of the gut microbiota of field-caught RPW larvae sampled in Sicily (Italy). RESULTS: The 16S rRNA gene-based Temporal Thermal Gradient Gel Electrophoresis (TTGE) of the gut microbiota of RPW field-trapped larvae revealed low bacterial diversity and stability of the community over seasons and among pools of larvae from different host trees. Pyrosequencing of the 16S rRNA gene V3 region confirmed low complexity and assigned 98% of the 75,564 reads to only three phyla: Proteobacteria (64.7%) Bacteroidetes (23.6%) and Firmicutes (9.6%) and three main families [Enterobacteriaceae (61.5%), Porphyromonadaceae (22.1%) and Streptococcaceae (8.9%)]. More than half of the reads could be classified at the genus level and eight bacterial genera were detected in the larval RPW gut at an abundance ≥1%: Dysgonomonas (21.8%), Lactococcus (8.9%), Salmonella (6.8%), Enterobacter (3.8%), Budvicia (2.8%), Entomoplasma (1.4%), Bacteroides (1.3%) and Comamonas (1%). High abundance of Enterobacteriaceae was also detected by culturing under aerobic conditions. Unexpectedly, acetic acid bacteria (AAB), that are known to establish symbiotic associations with insects relying on sugar-based diets, were not detected. CONCLUSIONS: The RPW gut microbiota is composed mainly of facultative and obligate anaerobic bacteria with a fermentative metabolism. These bacteria are supposedly responsible for palm tissue fermentation in the tunnels where RPW larvae thrive and might have a key role in the insect nutrition, and other functions that need to be investigated.


Assuntos
Biota , Gorgulhos/microbiologia , Animais , Carboidratos/análise , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Trato Gastrointestinal/microbiologia , Itália , Larva/microbiologia , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sicília
11.
Environ Sci Technol ; 48(1): 550-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24350777

RESUMO

Biogenic catalysts have been studied over the last 10 years in freshwater and soil environments, but neither their formation nor their application has been explored in marine ecosystems. The objective of this study was to develop a biogenic nanopalladium-based remediation method for reducing chlorinated hydrocarbons from marine environments by employing indigenous marine bacteria. Thirty facultative aerobic marine strains were isolated from two contaminated sites, the Lagoon of Mar Chica, Morocco, and Priolo Gargallo Syracuse, Italy. Eight strains showed concurrent palladium precipitation and biohydrogen production. X-ray diffraction and thin section transmission electron microscopy analysis indicated the presence of metallic Pd nanoparticles of various sizes (5-20 nm) formed either in the cytoplasm, in the periplasmic space, or extracellularly. These biogenic catalysts were used to dechlorinate trichloroethylene in simulated marine environments. Complete dehalogenation of 20 mg L(-1) trichloroethylene was achieved within 1 h using 50 mg L(-1) biogenic nanopalladium. These biogenic nanoparticles are promising developments for future marine bioremediation applications.


Assuntos
Desulfovibrio desulfuricans/metabolismo , Hidrocarbonetos Clorados/isolamento & purificação , Nanopartículas Metálicas/química , Paládio/química , Shewanella/metabolismo , Poluentes Químicos da Água/isolamento & purificação , Biodegradação Ambiental , Catálise , Halogenação , Itália , Microscopia Eletrônica de Transmissão , Paládio/isolamento & purificação , Tamanho da Partícula , Tricloroetileno/isolamento & purificação , Microbiologia da Água , Difração de Raios X
12.
Nanomaterials (Basel) ; 12(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35889595

RESUMO

Silica, titania, and mixed silica-titania powders have been used as supports for loading 5 wt% Cu, 5 wt% Ag, and 2.5 wt% Cu-2.5 wt% Ag with the aim of providing a series of nanomaterials with antifouling properties. All the solids were easily prepared by the wetness-impregnation method from commercially available chemical precursors. The resulting materials were characterized by several techniques such as X-ray diffraction analysis, X-ray photoelectron spectroscopy, N2 physisorption, and temperature-programmed reduction measurements. Four selected Cu and Ag SiO2- and TiO2-supported powders were tested as fillers for the preparation of marine antifouling coatings and complex viscosity measurements. Titania-based coatings showed better adhesion than silica-based coatings and the commercial topcoat. The addition of fillers enhances the resin viscosity, suggesting better workability of titania-based coatings than silica-based ones. The ecotoxicological performance of the powders was evaluated by Microtox luminescence tests, using the marine luminescent bacterium Vibrio fisheri. Further investigations of the microbiological activity of such materials were carried out focusing on the bacterial growth of Pseudoalteromonas sp., Alteromonas sp., and Pseudomonas sp. through measurements of optical density at 600 nm (OD600nm).

13.
Microorganisms ; 11(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36677350

RESUMO

Five psychrotolerant Alcanivorax spp. strains were isolated from Antarctic coastal waters. Strains were screened for molecular and physiological properties and analyzed regarding their growth capacity. Partial 16S rDNA, alk-B1, and P450 gene sequencing was performed. Biolog EcoPlates and the API 20E test were used to evaluate metabolic and biochemical profiles. Bacterial growth in sodium acetate was determined at 4, 15, 20, and 25 °C to evaluate the optimal temperature. Furthermore, the ability of each strain to grow in a hydrocarbon mixture at 4 and 25 °C was assayed. Biosurfactant production tests (drop-collapse and oil spreading) and emulsification activity tests (E24) were also performed. Concerning results of partial gene sequencing (16S rDNA, alk-B1, and P450), a high similarity of the isolates with the same genes isolated from other Alcanivorax spp. strains was observed. The metabolic profiles obtained by Biolog assays showed no significant differences in the isolates compared to the Alcanivorax borkumensis wild type. The results of biodegradative tests showed their capability to grow at different temperatures. All strains showed biosurfactant production and emulsification activity. Our findings underline the importance to proceed in the isolation and characterization of Antarctic hydrocarbon-degrading bacterial strains since their biotechnological and environmental applications could be useful even for pollution remediation in polar areas.

14.
Gels ; 8(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36135240

RESUMO

The need to ensure adequate antifouling protection of the hull in the naval sector led to the development of real painting cycles, which involve the spreading of three layers of polymeric material on the hull surface exposed to the marine environment, specifically defined as primer, tie coat and final topcoat. It is already well known that coatings based on suitable silanes provide an efficient and non-toxic approach for the hydrophobic and antifouling/fouling release treatment of surfaces. In the present work, functional hydrophobic hybrid silica-based coatings (topcoats) were developed by using sol-gel technology and deposited on surfaces with the "doctor blade" method. In particular, those organic silanes, featuring opportune functional groups such as long (either fluorinated) alkyl chains, have a notable influence on surface wettability as showed in this study. Furthermore, the hydrophobic behavior of this functionalized coating was improved by introducing an intermediate commercial tie-coat layer between the primer and the topcoat, in order to decrease the wettability (i.e., decreasing the surface energy with a matching increase in the contact angle, CA) and to therefore make such coatings ideal for the design and development of fouling release paints. The hereby synthesized coatings were characterized by optical microscopy, contact angle analysis and a mechanical pull-off test to measure the adhesive power of the coating against a metal substrate typically used in the nautical sector. Analysis to evaluate the bacterial adhesion and the formation of microbial biofilm were related in laboratory and simulation (microcosm) scales, and assessed by SEM analysis.

15.
Aquat Toxicol ; 243: 106059, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34991045

RESUMO

Petrochemical industries and oil refineries are sources of hazardous chemicals into the aquatic environments, and often a leading cause of reduced oxygen availability, thus resulting in adverse effects in biota. This study is an expansion of our previous work on the assessment of the BioFilm-Membrane Bioreactor (BF-MBR) to mitigate the impact of oil-polluted wastewater on marine environments. Specifically, this study evaluated the reduction of selected chemical constituents (hydrocarbons and trace metals) and toxicity related to hypoxia and DNA damage to mussels Mytilus galloprovincialis, before and after treatment of oil-polluted wastewater with the BF-MBR. The application of a multidisciplinary approach provided evidence of the efficiency of BF-MBR to significantly reducing the pollutants load from oily contaminated seawaters. As result, the health status of mussels was preserved by a hypoxic condition due to oily pollutants, as evidenced by the modulation in the gene expression of HIF-1α and PHD and changes in the level of hypotaurine and taurine. Moreover, ameliorative effects in the energy metabolism were also found in mussel gills showing increased levels of glycogen, glucose and ATP, as well as a mitigated genotoxicity was revealed by the Micronucleus and Comet assays. Overall, findings from this study support the use of the BF-MBR as a promising treatment biotechnology to avoid or limiting the compromise of marine environments from oil pollution.


Assuntos
Mytilus , Poluentes Químicos da Água , Purificação da Água , Animais , Biofilmes , Biomarcadores , Reatores Biológicos , Águas Residuárias/análise , Poluentes Químicos da Água/toxicidade
16.
Gels ; 8(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36135250

RESUMO

Biofouling has destructive effects on shipping and leisure vessels, thus producing severe problems for marine and naval sectors due to corrosion with consequent elevated fuel consumption and higher maintenance costs. The development of anti-fouling or fouling release coatings creates deterrent surfaces that prevent the initial settlement of microorganisms. In this regard, new silica-based materials were prepared using two alkoxysilane cross-linkers containing epoxy and amine groups (i.e., 3-Glycidyloxypropyltrimethoxysilane and 3-aminopropyltriethoxysilane, respectively), in combination with two functional fluoro-silane (i.e., 3,3,3-trifluoropropyl-trimethoxysilane and glycidyl-2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-hexadecafluorononylether) featuring well-known hydro repellent and anti-corrosion properties. As a matter of fact, the co-condensation of alkoxysilane featuring epoxide and amine ends, also mixed with two opportune long chain and short chain perfluorosilane precursors, allows getting stable amphiphilic, non-toxic, fouling release coatings. The sol-gel mixtures on coated glass slides were fully characterized by FT-IR spectroscopy, while the morphology was studied by scanning electron microscopy (SEM), and atomic force microscopy (AFM). The fouling release properties were evaluated through tests on treated glass slides in different microbial suspensions in seawater-based mediums and in seawater natural microcosms. The developed fluorinated coatings show suitable antimicrobial activities and low adhesive properties; no biocidal effects were observed for the microorganisms (bacteria).

17.
J Hazard Mater ; 414: 125586, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030422

RESUMO

In Antarctic regions, the composition and metabolic activity of microbial assemblages associated with plastic debris ("plastisphere") are almost unknown. A macroplastic item from land (MaL, 30 cm) and a mesoplastic from the sea (MeS, 4 mm) were collected in Maxwell Bay (King George Island, South Shetland) and analyzed by Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR), which confirmed a polystyrene foam and a composite high-density polyethylene composition for MaL and MeS, respectively. The structure and function of the two plastic-associated prokaryotic communities were studied by complementary 16S ribosomal RNA gene clone libraries, total bacterioplankton and culturable heterotrophic bacterial counts, enzymatic activities of the whole community and enzymatic profiles of bacterial isolates. Results showed that Gamma- and Betaproteobacteria (31% and 28%, respectively) dominated in MeS, while Beta- and Alphaproteobacteria (21% and 13%, respectively) in MaL. Sequences related to oil degrading bacteria (Alcanivorax,Marinobacter) confirmed the known anthropogenic pressure in King George Island. This investigation on plastic-associated prokaryotic structure and function represents the first attempt to characterize the ecological role of plastisphere in this Antarctic region and provides the necessary background for future research on the significance of polymer type, surface characteristics and environmental conditions in shaping the plastisphere.


Assuntos
Alcanivoraceae , Plásticos , Regiões Antárticas , Bactérias/genética , Poliestirenos
18.
Sci Rep ; 11(1): 8124, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854112

RESUMO

Bioremediation offers a viable alternative for the reduction of contaminants from the environment, particularly petroleum and its recalcitrant derivatives. In this study, the ability of a strain of Pseudomonas BUN14 to degrade crude oil, pristane and dioxin compounds, and to produce biosurfactants, was investigated. BUN14 is a halotolerant strain isolated from polluted sediment recovered from the refinery harbor on the Bizerte coast, north Tunisia and capable of producing surfactants. The strain BUN14 was assembled into 22 contigs of 4,898,053 bp with a mean GC content of 62.4%. Whole genome phylogeny and comparative genome analyses showed that strain BUN14 could be affiliated with two validly described Pseudomonas Type Strains, P. kunmingensis DSM 25974T and P. chloritidismutans AW-1T. The current study, however, revealed that the two Type Strains are probably conspecific and, given the priority of the latter, we proposed that P. kunmingensis DSM 25974 is a heteronym of P. chloritidismutans AW-1T. Using GC-FID analysis, we determined that BUN14 was able to use a range of hydrocarbons (crude oil, pristane, dibenzofuran, dibenzothiophene, naphthalene) as a sole carbon source. Genome analysis of BUN14 revealed the presence of a large repertoire of proteins (154) related to xenobiotic biodegradation and metabolism. Thus, 44 proteins were linked to the pathways for complete degradation of benzoate and naphthalene. The annotation of conserved functional domains led to the detection of putative genes encoding enzymes of the rhamnolipid biosynthesis pathway. Overall, the polyvalent hydrocarbon degradation capacity of BUN14 makes it a promising candidate for application in the bioremediation of polluted saline environments.


Assuntos
Genoma Bacteriano , Pseudomonas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromatografia Gasosa , Dioxinas/química , Dioxinas/metabolismo , Sedimentos Geológicos/microbiologia , Hidrocarbonetos/química , Hidrocarbonetos/metabolismo , Naftalenos/metabolismo , Filogenia , Pseudomonas/classificação , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , Tensoativos/metabolismo , Tunísia
19.
N Biotechnol ; 58: 25-31, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32485241

RESUMO

Immobilization of microorganisms capable of degrading specific contaminants significantly promotes bioremediation processes. In this study, innovative and ecofriendly biosorbent-biodegrading biofilms have been developed in order to remediate oil-contaminated water. This was achieved by immobilizing hydrocarbon-degrading gammaproteobacteria and actinobacteria on biodegradable oil-adsorbing carriers, based on polylactic acid and polycaprolactone electrospun membranes. High capacities for adhesion and proliferation of bacterial cells were observed by scanning electron microscopy. The bioremediation efficiency of the systems, tested on crude oil and quantified by gas chromatography, showed that immobilization increased hydrocarbon biodegradation by up to 23 % compared with free living bacteria. The resulting biosorbent biodegrading biofilms simultaneously adsorbed 100 % of spilled oil and biodegraded more than 66 % over 10 days, with limited environmental dispersion of cells. Biofilm-mediated bioremediation, using eco-friendly supports, is a low-cost, low-impact, versatile tool for bioremediation of aquatic systems.


Assuntos
Biofilmes , Recuperação e Remediação Ambiental , Poluição por Petróleo/análise , Petróleo/metabolismo , Poluição da Água/análise , Actinobacteria/citologia , Actinobacteria/metabolismo , Adsorção , Biodegradação Ambiental , Cromatografia Gasosa , Gammaproteobacteria/citologia , Gammaproteobacteria/metabolismo
20.
Mar Biotechnol (NY) ; 22(3): 411-422, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32240431

RESUMO

The research presented here was conducted to ascertain the effectiveness of recovery technologies in remediating a compromised marine environment. The multidisciplinary approach aims to integrate traditional chemical-physical analysis and to assess the biological parameters of Mytilus galloprovincialis within different experimental mesocosms (W, G, and B). In particular, this system was designed to reproduce sediment resuspension in a marine environment, which is thought to be one cause of contaminant release. The study combined morphological and ultrastructural observations with DNA damage assessment and mRNA expression of those genes involved in cellular stress responses. The tissues of mussels maintained in the polluted mesocosm showed a higher accumulation of Pb and Hg than in those maintained in restored mesocosm. This observation correlates well with mRNA expression of MT10 and data on DNA damage. The outcome of the biological evaluation consolidates the chemical characterization and supports the concept that the remediation method should be evaluated at an early stage, both to analytically determine the reduction of toxic components and to assess its ultimate impact on the biological system.


Assuntos
Recuperação e Remediação Ambiental/métodos , Sedimentos Geológicos/química , Mytilus/metabolismo , Animais , Dano ao DNA , Poluição Ambiental/efeitos adversos , Chumbo/metabolismo , Chumbo/toxicidade , Mercúrio/metabolismo , Mercúrio/toxicidade , Mytilus/efeitos dos fármacos , Mytilus/genética , Estresse Oxidativo , RNA Mensageiro , Água do Mar , Poluição Química da Água/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA