Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurochem ; 156(2): 182-199, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32936929

RESUMO

In the adult hypothalamus, the neuronal precursor role is attributed to the radial glia-like cells that line the third-ventricle (3V) wall called tanycytes. Under nutritional cues, including hypercaloric diets, tanycytes proliferate and differentiate into mature neurons that moderate body weight, suggesting that hypothalamic neurogenesis is an adaptive mechanism in response to metabolic changes. Previous studies have shown that the tanycyte glucosensing mechanism depends on connexin-43 hemichannels (Cx43 HCs), purine release, and increased intracellular free calcium ion concentration [(Ca2+ )i ] mediated by purinergic P2Y receptors. Since, Fibroblast Growth Factor 2 (FGF2) causes similar purinergic events in other cell types, we hypothesize that this pathway can be also activated by FGF2 in tanycytes to promote their proliferation. Here, we used bromodeoxyuridine (BrdU) incorporation to evaluate if FGF2-induced tanycyte cell division is sensitive to Cx43 HC inhibition in vitro and in vivo. Immunocytochemical analyses showed that cultured tanycytes maintain the expression of in situ markers. After FGF2 exposure, tanycytic Cx43 HCs opened, enabling release of ATP to the extracellular milieu. Moreover, application of external ATP was enough to induce their cell division, which could be suppressed by Cx43 HC or P2Y1-receptor inhibitors. Similarly, in vivo experiments performed on rats by continuous infusion of FGF2 and a Cx43 HC inhibitor into the 3V, demonstrated that FGF2-induced ß-tanycyte proliferation is sensitive to Cx43 HC blockade. Thus, FGF2 induced Cx43 HC opening, triggered purinergic signaling, and increased ß-tanycytes proliferation, highlighting some of the molecular mechanisms involved in the cell division response of tanycyte. This article has an Editorial Highlight see https://doi.org/10.1111/jnc.15218.


Assuntos
Conexina 43/metabolismo , Células Ependimogliais/fisiologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Canais Iônicos/metabolismo , Neurogênese/fisiologia , Animais , Proliferação de Células/fisiologia , Masculino , Células-Tronco Neurais/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
2.
Dev Biol ; 378(2): 74-82, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23588098

RESUMO

The neural crest (NC) is a transient embryonic structure induced at the border of the neural plate. NC cells extensively migrate towards diverse regions of the embryo, where they differentiate into various derivatives, including most of the craniofacial skeleton and the peripheral nervous system. The Ric-8A protein acts as a guanine nucleotide exchange factor for several Gα subunits, and thus behaves as an activator of signaling pathways mediated by heterotrimeric G proteins. Using in vivo transplantation assays, we demonstrate that Ric-8A levels are critical for the migration of cranial NC cells and their subsequent differentiation into craniofacial cartilage during Xenopus development. NC cells explanted from Ric-8A morphant embryos are unable to migrate directionally towards a source of the Sdf1 peptide, a potent chemoattractant for NC cells. Consistently, Ric-8A knock-down showed anomalous radial migratory behavior, displaying a strong reduction in cell spreading and focal adhesion formation. We further show that during in vivo and in vitro neural crest migration, Ric-8A localizes to the cell membrane, in agreement with its role as a G protein activator. We propose that Ric-8A plays essential roles during the migration of cranial NC cells, possibly by regulating cell adhesion and spreading.


Assuntos
Movimento Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Crista Neural/citologia , Proteínas de Xenopus/metabolismo , Animais , Adesão Celular/genética , Membrana Celular/metabolismo , Células Cultivadas , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/genética , Hibridização In Situ , Microscopia Confocal , Crista Neural/embriologia , Crista Neural/metabolismo , Transdução de Sinais/genética , Crânio/embriologia , Crânio/inervação , Imagem com Lapso de Tempo/métodos , Xenopus/embriologia , Proteínas de Xenopus/genética , Xenopus laevis/embriologia
3.
Gigascience ; 112022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472574

RESUMO

BACKGROUND: The advancement of hybrid sequencing technologies is increasingly expanding genome assemblies that are often annotated using hybrid sequencing transcriptomics, leading to improved genome characterization and the identification of novel genes and isoforms in a wide variety of organisms. RESULTS: We developed an easy-to-use genome-guided transcriptome annotation pipeline that uses assembled transcripts from hybrid sequencing data as input and distinguishes between coding and long non-coding RNAs by integration of several bioinformatic approaches, including gene reconciliation with previous annotations in GTF format. We demonstrated the efficiency of this approach by correctly assembling and annotating all exons from the chicken SCO-spondin gene (containing more than 105 exons), including the identification of missing genes in the chicken reference annotations by homology assignments. CONCLUSIONS: Our method helps to improve the current transcriptome annotation of the chicken brain. Our pipeline, implemented on Anaconda/Nextflow and Docker is an easy-to-use package that can be applied to a broad range of species, tissues, and research areas helping to improve and reconcile current annotations. The code and datasets are publicly available at https://github.com/cfarkas/annotate_my_genomes.


Assuntos
Análise de Sequência de RNA
4.
Dev Dyn ; 239(10): 2584-93, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20730872

RESUMO

The subcommissural organ (SCO) is a roof plate differentiation located in the caudal diencephalon under the posterior commissure (PC). A role for SCO and its secretory product, SCO-spondin, in the formation of the PC has been proposed. Here, we provide immunohistochemical evidence to suggest that SCO is anatomically divided in a bilateral region positive for SCO-spondin that surrounds a negative medial region. Remarkably, axons contacting the lateral region are highly fasciculated, in sharp contrast with the defasciculated axons of the medial region. In addition, lateral axon fascicles run toward the midline inside of tunnels limited by the basal prolongations of SCO cells and extracellular SCO-spondin. Our in vitro data in collagen gel matrices show that SCO-spondin induces axonal growth and fasciculation of pretectal explants. Together, our findings support the idea that SCO-spondin participates in the guidance and fasciculation of axons of the PC.


Assuntos
Diencéfalo/embriologia , Órgão Subcomissural/embriologia , Animais , Embrião de Galinha , Eletroforese em Gel de Poliacrilamida , Imuno-Histoquímica , Integrina alfa6/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nestina , Vimentina/metabolismo
5.
Fluids Barriers CNS ; 18(1): 45, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34600566

RESUMO

Cerebrospinal fluid is a clear fluid that occupies the ventricular and subarachnoid spaces within and around the brain and spinal cord. Cerebrospinal fluid is a dynamic signaling milieu that transports nutrients, waste materials and neuroactive substances that are crucial for the development, homeostasis and functionality of the central nervous system. The mechanisms that enable cerebrospinal fluid to simultaneously exert these homeostatic/dynamic functions are not fully understood. SCO-spondin is a large glycoprotein secreted since the early stages of development into the cerebrospinal fluid. Its domain architecture resembles a combination of a matricellular protein and the ligand-binding region of LDL receptor family. The matricellular proteins are a group of extracellular proteins with the capacity to interact with different molecules, such as growth factors, cytokines and cellular receptors; enabling the integration of information to modulate various physiological and pathological processes. In the same way, the LDL receptor family interacts with many ligands, including ß-amyloid peptide and different growth factors. The domains similarity suggests that SCO-spondin is a matricellular protein enabled to bind, modulate, and transport different cerebrospinal fluid molecules. SCO-spondin can be found soluble or polymerized into a dynamic threadlike structure called the Reissner fiber, which extends from the diencephalon to the caudal tip of the spinal cord. Reissner fiber continuously moves caudally as new SCO-spondin molecules are added at the cephalic end and are disaggregated at the caudal end. This movement, like a conveyor belt, allows the transport of the bound molecules, thereby increasing their lifespan and action radius. The binding of SCO-spondin to some relevant molecules has already been reported; however, in this review we suggest more than 30 possible binding partners, including peptide ß-amyloid and several growth factors. This new perspective characterizes SCO-spondin as a regulator of cerebrospinal fluid activity, explaining its high evolutionary conservation, its apparent multifunctionality, and the lethality or severe malformations, such as hydrocephalus and curved body axis, of knockout embryos. Understanding the regulation and identifying binding partners of SCO-spondin are crucial for better comprehension of cerebrospinal fluid physiology.


Assuntos
Encéfalo/metabolismo , Proteínas de Sinalização Intercelular CCN/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Líquido Cefalorraquidiano/metabolismo , Animais
6.
Front Cell Dev Biol ; 9: 801652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155449

RESUMO

The vertebral column, or spine, provides mechanical support and determines body axis posture and motion. The most common malformation altering spine morphology and function is adolescent idiopathic scoliosis (AIS), a three-dimensional spinal deformity that affects approximately 4% of the population worldwide. Due to AIS genetic heterogenicity and the lack of suitable animal models for its study, the etiology of this condition remains unclear, thus limiting treatment options. We here review current advances in zebrafish phenogenetics concerning AIS-like models and highlight the recently discovered biological processes leading to spine malformations. First, we focus on gene functions and phenotypes controlling critical aspects of postembryonic aspects that prime in spine architecture development and straightening. Second, we summarize how primary cilia assembly and biomechanical stimulus transduction, cerebrospinal fluid components and flow driven by motile cilia have been implicated in the pathogenesis of AIS-like phenotypes. Third, we highlight the inflammatory responses associated with scoliosis. We finally discuss recent innovations and methodologies for morphometrically characterize and analyze the zebrafish spine. Ongoing phenotyping projects are expected to identify novel and unprecedented postembryonic gene functions controlling spine morphology and mutant models of AIS. Importantly, imaging and gene editing technologies are allowing deep phenotyping studies in the zebrafish, opening new experimental paradigms in the morphometric and three-dimensional assessment of spinal malformations. In the future, fully elucidating the phenogenetic underpinnings of AIS etiology in zebrafish and humans will undoubtedly lead to innovative pharmacological treatments against spinal deformities.

7.
Biomolecules ; 11(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944540

RESUMO

The vertebrate neuromuscular junction (NMJ) is formed by a presynaptic motor nerve terminal and a postsynaptic muscle specialization. Cumulative evidence reveals that Wnt ligands secreted by the nerve terminal control crucial steps of NMJ synaptogenesis. For instance, the Wnt3 ligand is expressed by motor neurons at the time of NMJ formation and induces postsynaptic differentiation in recently formed muscle fibers. However, the behavior of presynaptic-derived Wnt ligands at the vertebrate NMJ has not been deeply analyzed. Here, we conducted overexpression experiments to study the expression, distribution, secretion, and function of Wnt3 by transfection of the motor neuron-like NSC-34 cell line and by in ovo electroporation of chick motor neurons. Our findings reveal that Wnt3 is transported along motor axons in vivo following a vesicular-like pattern and reaches the NMJ area. In vitro, we found that endogenous Wnt3 expression increases as the differentiation of NSC-34 cells proceeds. Although NSC-34 cells overexpressing Wnt3 do not modify their morphological differentiation towards a neuronal phenotype, they effectively induce acetylcholine receptor clustering on co-cultured myotubes. These findings support the notion that presynaptic Wnt3 is transported and secreted by motor neurons to induce postsynaptic differentiation in nascent NMJs.


Assuntos
Neurônios Motores/citologia , Proteína Wnt3/genética , Proteína Wnt3/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Embrião de Galinha , Técnicas de Cocultura , Eletroporação , Ligantes , Camundongos , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo
8.
Dev Dyn ; 238(10): 2494-504, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19681158

RESUMO

The roof plate of the caudal diencephalon is formed by the posterior commissure (PC) and the underlying secretory ependyma, the subcommissural organ (SCO). The SCO is composed by radial glial cells bearing processes that cross the PC and attach to the meningeal basement membrane. Since early development, the SCO synthesizes SCO-spondin, a glycoprotein that shares similarities to axonal guidance proteins. In vitro, SCO-spondin promotes neuritic outgrowth through a mechanism mediated by integrin beta1. However, the secretion of SCO-spondin toward the extracellular matrix that surrounds the PC axons and the expression of integrins throughout PC development have not been addressed. Here we provide immunohistochemical evidence to suggest that during chick development SCO cells secrete SCO-spondin through their basal domain, where it is deposited into the extracellular matrix in close contact with axons of the PC that express integrin beta1. Our results suggest that SCO-spondin has a role in the development of the PC through its interaction with integrin beta1.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Diencéfalo/embriologia , Integrina beta1/metabolismo , Órgão Subcomissural/embriologia , Órgão Subcomissural/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/genética , Células Cultivadas , Embrião de Galinha , Diencéfalo/anatomia & histologia , Diencéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Integrina alfa6/genética , Integrina alfa6/metabolismo , Integrina beta1/genética , Morfogênese/fisiologia , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Órgão Subcomissural/citologia , Vimentina/metabolismo
9.
J Neurochem ; 108(3): 563-77, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19054284

RESUMO

Ascorbic acid (AA) is best known for its role as an essential nutrient in humans and other species. As the brain does not synthesize AA, high levels are achieved in this organ by specific uptake mechanisms, which concentrate AA from the bloodstream to the CSF and from the CSF to the intracellular compartment. Two different isoforms of sodium-vitamin C co-transporters (SVCT1 and SVCT2) have been cloned. Both SVCT proteins mediate high affinity Na(+)-dependent L-AA transport and are necessary for the uptake of vitamin C in many tissues. In the adult brain the expression of SVCT2 was observed in the hippocampus and cortical neurons by in situ hybridization; however, there is no data regarding the expression and distribution of this transporter in the fetal brain. The expression of SVCT2 in embryonal mesencephalic neurons has been shown by RT-PCR suggesting an important role for vitamin C in dopaminergic neuronal differentiation. We analyze SVCT2 expression in human and rat developing brain by RT-PCR. Additionally, we study the normal localization of SVCT2 in rat fetal brain by immunohistochemistry and in situ hybridization demonstrating that SVCT2 is highly expressed in the ventricular and subventricular area of the rat brain. SVCT2 expression and function was also confirmed in neurons isolated from brain cortex and cerebellum. The kinetic parameters associated with the transport of AA in cultured neurons and neuroblastoma cell lines were also studied. We demonstrate two different affinity transport components for AA in these cells. Finally, we show the ability of different flavonoids to inhibit AA uptake in normal or immortalized neurons. Our data demonstrates that brain cortex and cerebellar stem cells, neurons and neuroblastoma cells express SVCT2. Dose-dependent inhibition analysis showed that quercetin inhibited AA transport in cortical neurons and Neuro2a cells.


Assuntos
Neoplasias Encefálicas/metabolismo , Tronco Encefálico/metabolismo , Flavonoides/farmacologia , Neuroblastoma/metabolismo , Neurônios/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Transportadores de Ânions Orgânicos Dependentes de Sódio/biossíntese , Sódio/fisiologia , Simportadores/antagonistas & inibidores , Simportadores/biossíntese , Animais , Ácido Ascórbico/metabolismo , Western Blotting , Tronco Encefálico/citologia , Linhagem Celular Tumoral , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , DNA Complementar/biossíntese , DNA Complementar/genética , Feminino , Humanos , Imuno-Histoquímica , Hibridização In Situ , Cinética , Camundongos , Neurônios/efeitos dos fármacos , Gravidez , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transportadores de Sódio Acoplados à Vitamina C
10.
Methods Mol Biol ; 2044: 51-60, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31432405

RESUMO

The embryonic cerebrospinal fluid (eCSF) influences neuroepithelial cell behavior, affecting proliferation, differentiation, and survival. One major question to resolve in the field is to precisely describe the eCSF molecules responsible and to understand how these molecules interact in order to exert their functions. Here we describe an in vitro protocol to analyze the influence of eCSF components on neuroepithelium development.


Assuntos
Técnicas de Cultura de Células/métodos , Proteínas do Líquido Cefalorraquidiano/metabolismo , Células Neuroepiteliais/citologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Proteínas do Líquido Cefalorraquidiano/isolamento & purificação , Proteínas do Líquido Cefalorraquidiano/fisiologia , Embrião de Galinha , Imuno-Histoquímica/métodos , Neurogênese , Técnicas de Cultura de Órgãos/métodos , Tegmento Mesencefálico/citologia , Tegmento Mesencefálico/embriologia
11.
PLoS One ; 13(8): e0201438, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30071073

RESUMO

Despite the advance of knowledge about the factors and potential mechanisms triggering the ichthyotoxicity in microalgae, these remain unclear or are controversial for several species (e.g. Heterosigma). Neither typical toxicity tests carried out with cell extracts nor direct exposure to harmful species were proved suitable to unravel the mechanism of harm. Ichthyotoxic species show a complex harmful effect on fish, which is mediated through various mechanisms depending on the species. In this work, we present a method to study sub-lethal effects triggered by reactive oxygen species of a population of harmful algae in vivo over a fish cell line. To that end, Transwell co-cultures in which causative and target species are separated by a 0.4 µm pore membrane were carried out. This allowed the evaluation of the effect of the released molecules by cells in a rapid and compact test. In our method, the harmful effect was sensed through the transcriptional activation of sub-lethal marker Hsp70b in the CHSE214 salmon cell line. The method was tested with the raphidophyte Heterosigma akashiwo and Dunaliella tertiolecta (as negative control). It was shown that superoxide intracellular content and its release are not linked in these species. The methodology allowed proving that reactive oxygen species produced by H. akashiwo are able to induce the transcriptional activation of sub-lethal marker Hsp70b. However, neither loss of viability nor apoptosis was observed in CHSE214 salmon cell line except when exposed to direct contact with the raphidophyte cells (or their extract). Consequently, ROS was not concluded to be the main cause of ichthyotoxicity in H. akashiwo.


Assuntos
Proteínas de Choque Térmico HSP70/biossíntese , Microalgas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Estramenópilas/crescimento & desenvolvimento , Ativação Transcricional , Animais , Linhagem Celular , Técnicas de Cocultura , Proteínas de Choque Térmico HSP70/genética , Microalgas/genética , Salmão , Estramenópilas/genética
12.
Front Cell Neurosci ; 12: 406, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534054

RESUMO

Tanycytes are hypothalamic radial glia-like cells that form the basal wall of the third ventricle (3V) where they sense glucose and modulate neighboring neuronal activity to control feeding behavior. This role requires the coupling of hypothalamic cells since transient decreased hypothalamic Cx43 expression inhibits the increase of brain glucose-induced insulin secretion. Tanycytes have been postulated as possible hypothalamic neuronal precursors due to their privileged position in the hypothalamus that allows them to detect mitogenic signals and because they share the markers and characteristics of neuronal precursors located in other neurogenic niches, including the formation of coupled networks through connexins. Using wild-type (WT), Cx30-/- and Cx30-/-, Cx43fl/fl:glial fibrillary acidic protein (GFAP)-Cre (double knockout, dKO) mouse lines, we demonstrated that tanycytes are highly coupled to each other and also give rise to a panglial network specifically through Cx43. Using the human GFAP (hGFAP)-enhanced green fluorescent protein (EGFP) transgenic mouse line, we provided evidence that the main parenchymal-coupled cells were astrocytes. In addition, electrophysiological parameters, such as membrane resistance, were altered when Cx43 was genetically absent or pharmacologically inhibited. Finally, in the dKO mouse line, we detected a significant decrease in the number of hypothalamic proliferative parenchymal cells. Our results demonstrate the importance of Cx43 in tanycyte homotypic and panglial coupling and show that Cx43 function influences the proliferative potential of hypothalamic cells.

13.
Front Neurosci ; 11: 190, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28424582

RESUMO

In the adult brain, well-characterized neurogenic niches are located in the subventricular zone (SVZ) of the lateral ventricles and in the subgranular zone (SGZ) of the hippocampus. In both regions, neural precursor cells (NPCs) share markers of embryonic radial glia and astroglial cells, and in vitro clonal expansion of these cells leads to neurosphere formation. It has also been more recently demonstrated that neurogenesis occurs in the adult hypothalamus, a brain structure that integrates peripheral signals to control energy balance and dietary intake. The NPCs of this region, termed tanycytes, are ependymal-glial cells, which comprise the walls of the infundibular recess of the third ventricle and contact the median eminence. Thus, tanycytes are in a privileged position to detect hormonal, nutritional and mitogenic signals. Recent studies reveal that in response to nutritional signals, tanycytes are capable of differentiating into orexigenic or anorexigenic neurons, suggesting that these cells are crucial for control of feeding behavior. In this review, we discuss evidence, which suggests that hypothalamic neurogenesis may act as an additional adaptive mechanism in order to respond to changes in diet.

14.
Front Neuroanat ; 10: 89, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27733818

RESUMO

Extracellular matrix (ECM) molecules are pivotal for central nervous system (CNS) development, facilitating cell migration, axonal growth, myelination, dendritic spine formation, and synaptic plasticity, among other processes. During axon guidance, the ECM not only acts as a permissive or non-permissive substrate for navigating axons, but also modulates the effects of classical guidance cues, such as netrin or Eph/ephrin family members. Despite being highly important, little is known about the expression of ECM molecules during CNS development. Therefore, this study assessed the molecular expression patterns of tenascin, HNK-1, laminin, fibronectin, perlecan, decorin, and osteopontin along chick embryo prosomere 1 during posterior commissure development. The posterior commissure is the first transversal axonal tract of the embryonic vertebrate brain. Located in the dorso-caudal portion of prosomere 1, posterior commissure axons primarily arise from the neurons of basal pretectal nuclei that run dorsally to the roof plate midline, where some turn toward the ipsilateral side. Expressional analysis of ECM molecules in this area these revealed to be highly arranged, and molecule interactions with axon fascicles suggested involvement in processes other than structural support. In particular, tenascin and the HNK-1 epitope extended in ventro-dorsal columns and enclosed axons during navigation to the roof plate. Laminin and osteopontin were expressed in the midline, very close to axons that at this point must decide between extending to the contralateral side or turning to the ipsilateral side. Finally, fibronectin, decorin, and perlecan appeared unrelated to axonal pathfinding in this region and were instead restricted to the external limiting membrane. In summary, the present report provides evidence for an intricate expression of different extracellular molecules that may cooperate in guiding posterior commissure axons.

15.
Artigo em Inglês | MEDLINE | ID: mdl-27002718

RESUMO

Detecting marine biotoxins such as paralytic shellfish toxins (PSTs) is essential to ensuring the safety of seafood. The mouse bioassay is the internationally accepted method for monitoring PSTs, but technical and ethical issues have led to a search for new detection methods. The mouse neuroblastoma cell-based assay (Neuro-2a CBA) using ouabain and veratridine (O/V) has proven useful for the detection of PSTs. However, CBAs are sensitive to shellfish-associated matrix interferences. As the extraction method highly influences matrix interferences, this study compared three extraction protocols: Association of Official Analytical Chemists (AOAC) 2005.06, AOAC 2011.02 and an alternative liquid-liquid method. These methods were used to assess the matrix effect of extracts from four commercially important bivalve species (Chilean mussel, Magellan mussel, clam and Pacific oyster) in Neuro-2a CBA. Extracts from all three protocols caused a toxic effect in Neuro-2a cells (without O/V) when tested at a concentration of 25 mg of tissue-equivalent (TE) ml(-1). The greatest toxicity was obtained through the AOAC 2011.02 protocol, especially for the Chilean mussel and Pacific oyster extracts. Similar toxicity levels (less than 15%) were observed in all extracts at 3.1 mg TE ml(-1). When assessed in Neuro-2a CBA, AOAC 2005.06 extracts presented the lowest matrix interferences, while the highest interferences were observed for AOAC 2011.02 in Magellan mussel and clam extracts. Finally, the AOAC 2005.06 and alternative protocols were compared using Chilean mussel samples fortified with 40 and 80 µg STX per 100 g meat. The AOAC 2005.06 method demonstrated better results. In conclusion, the AOAC 2005.06 extracts exhibited the fewest interferences in the Neuro-2a CBA. Therefore, this extraction method should be considered for the implementation of Neuro-2a CBA as a high-throughput screening methodology for PST detection.


Assuntos
Bivalves/química , Matriz Extracelular/química , Contaminação de Alimentos , Inspeção de Alimentos/métodos , Toxinas Marinhas/análise , Neurônios/efeitos dos fármacos , Frutos do Mar/análise , Alternativas aos Testes com Animais , Animais , Bivalves/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chile , Matriz Extracelular/metabolismo , Contaminação de Alimentos/prevenção & controle , Ensaios de Triagem em Larga Escala , Extração Líquido-Líquido , Toxinas Marinhas/biossíntese , Toxinas Marinhas/toxicidade , Camundongos , Neurônios/patologia , Reprodutibilidade dos Testes , Saxitoxina/análise , Saxitoxina/biossíntese , Saxitoxina/toxicidade , Frutos do Mar/efeitos adversos , Intoxicação por Frutos do Mar/etiologia , Intoxicação por Frutos do Mar/patologia , Intoxicação por Frutos do Mar/prevenção & controle , Especificidade da Espécie , Extratos de Tecidos/análise , Extratos de Tecidos/isolamento & purificação , Extratos de Tecidos/toxicidade
16.
Gene Expr Patterns ; 22(1): 15-25, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27613600

RESUMO

Heterotrimeric G protein signaling plays major roles during different cellular events. However, there is a limited understanding of the molecular mechanisms underlying G protein control during embryogenesis. G proteins are highly conserved and can be grouped into four subfamilies according to sequence homology and function. To further studies on G protein function during embryogenesis, the present analysis identified four Gα subunits representative of the different subfamilies and determined their spatiotemporal expression patterns during Xenopus tropicalis embryogenesis. Each of the Gα subunit transcripts was maternally and zygotically expressed, and, as development progressed, dynamic expression patterns were observed. In the early developmental stages, the Gα subunits were expressed in the animal hemisphere and dorsal marginal zone. While expression was observed at the somite boundaries, in vascular structures, in the eye, and in the otic vesicle during the later stages, expression was mainly found in neural tissues, such as the neural tube and, especially, in the cephalic vesicles, neural crest region, and neural crest-derived structures. Together, these results support the pleiotropism and complexity of G protein subfamily functions in different cellular events. The present study constitutes the most comprehensive description to date of the spatiotemporal expression patterns of Gα subunits during vertebrate development.


Assuntos
Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Proteínas Heterotriméricas de Ligação ao GTP/biossíntese , Xenopus/genética , Sequência de Aminoácidos/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Heterotriméricas de Ligação ao GTP/genética , Hibridização In Situ , Crista Neural/crescimento & desenvolvimento , Crista Neural/metabolismo , Tubo Neural/crescimento & desenvolvimento , Tubo Neural/metabolismo , Transdução de Sinais , Somitos/crescimento & desenvolvimento , Somitos/metabolismo , Xenopus/crescimento & desenvolvimento
17.
Front Neuroanat ; 9: 72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26074785

RESUMO

During early stages of development, encephalic vesicles are composed by a layer of neuroepithelial cells surrounding a central cavity filled with embryonic cerebrospinal fluid (eCSF). This fluid contains several morphogens that regulate proliferation and differentiation of neuroepithelial cells. One of these neurogenic factors is SCO-spondin, a giant protein secreted to the eCSF from early stages of development. Inhibition of this protein in vivo or in vitro drastically decreases the neurodifferentiation process. Other important neurogenic factors of the eCSF are low density lipoproteins (LDL), the depletion of which generates a 60% decrease in mesencephalic explant neurodifferentiation. The presence of several LDL receptor class A (LDLrA) domains (responsible for LDL binding in other proteins) in the SCO-spondin sequence suggests a possible interaction between both molecules. This possibility was analyzed using three different experimental approaches: (1) Bioinformatics analyses of the SCO-spondin region, that contains eight LDLrA domains in tandem, and of comparisons with the LDL receptor consensus sequence; (2) Analysis of the physical interactions of both molecules through immunohistochemical colocalization in embryonic chick brains and through the immunoprecipitation of LDL with anti-SCO-spondin antibodies; and (3) Analysis of functional interactions during the neurodifferentiation process when these molecules were added to a culture medium of mesencephalic explants. The results revealed that LDL and SCO-spondin interact to form a complex that diminishes the neurogenic capacities that both molecules have separately. Our work suggests that the eCSF is an active signaling center with a complex regulation system that allows for correct brain development.

18.
Front Cell Neurosci ; 9: 480, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26778959

RESUMO

The dynamic and molecular composition of the cerebrospinal fluid (CSF) and, consequently, the CSF physiology is much more complex and fascinating than the simplistic view held for decades. Signal molecules either transported from blood to CSF or secreted into the CSF by circumventricular organs and CSF-contacting neurons, use the CSF to reach their targets in the brain, including the pre- and postnatal neurogenic niche. The subcommissural organ (SCO), a highly conserved brain gland present throughout the vertebrate phylum, is one of the sources for signals, as well as the choroid plexus, tanycytes and CSF-contacting neurons. The SCO secretes into the fetal and adult CSF SCO-spondin, transthyretin, and basic fibroblast growth factor. These proteins participate in certain aspects of neurogenesis, such as cell cycle of neural stem cells, neuronal differentiation, and axon pathfinding. Through the CSF, the SCO-secretory proteins may reach virtually any target in the embryonic and adult central nervous system. Since the SCO continues to secrete throughout life span, it seems likely that the neurogenetic property of the SCO compounds would be targeted to the niches where neurogenesis continues in adulthood. This review is aimed to bring into discussion early and new evidence concerning the role(s) of the SCO, and the probable mechanisms by which SCO compounds can readily reach the neurogenic niche of the subventricular zone flowing with the CSF to participate in the regulation of the neurogenic niche. As we unfold the multiples trans-fluid talks between discrete brain domains we will have more tools to influence such talks.

19.
Brain Res Mol Brain Res ; 110(2): 177-92, 2003 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-12591155

RESUMO

The subcommissural organ (SCO) is a brain gland that secretes glycoproteins into the cerebrospinal fluid (CSF), where they subsequently aggregate to form Reissner fiber (RF). By addition of newly released glycoproteins to its cephalic end, RF grows constantly through the Sylvian aqueduct, fourth ventricle and central canal of the spinal cord. Disaggregation of RF-material and passage to blood occur when RF reaches the terminal ventricle at the filum. The present investigation was designed to test the hypothesis that RF binds, transports and clears away monoamines present in the CSF. Four experimental protocols were applied: (i) in vivo binding of labeled monoamines to the rat RF, studied by pulse and chase, and after perfusion for 7 days; (ii) identification of monoamines, by high-performance liquid chromatography (HPLC), naturally occurring in the bovine RF; (iii) in vitro binding of labeled and unlabeled monoamines to the isolated bovine RF; and (iv) tentative identification of the amine binding site(s) in RF-proteins by use of specific antibodies. The results obtained indicate that RF participates in the regulation of the CSF concentration of monoamines either by binding and transporting them away throughout the central canal of the spinal cord (L-DOPA, noradrenaline, adrenaline), or by transiently binding them and releasing them back to the CSF (serotonin). Furthermore, evidence was obtained that (i) adrenaline and noradrenaline share the same binding site, and that this site would correspond to a repeated sequence present in the SCO-spondin, the major protein component of RF; and (ii) serotonin has its own binding site in RF.


Assuntos
Monoaminas Biogênicas/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Líquido Cefalorraquidiano/metabolismo , Órgão Subcomissural/metabolismo , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Transporte Biológico/fisiologia , Bovinos , Moléculas de Adesão Celular Neuronais/antagonistas & inibidores , Di-Hidroxifenilalanina/metabolismo , Di-Hidroxifenilalanina/farmacocinética , Epinefrina/metabolismo , Epinefrina/farmacocinética , Feminino , Masculino , Taxa de Depuração Metabólica/fisiologia , Norepinefrina/metabolismo , Norepinefrina/farmacocinética , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Serotonina/farmacologia
20.
Front Neuroanat ; 8: 49, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25009468

RESUMO

Bilaterally symmetric organisms need to exchange information between the two sides of their bodies in order to integrate sensory inputs and coordinate motor control. This exchange occurs through commissures formed by neurons that project axons across the midline to the contralateral side of the central nervous system. The posterior commissure is the first transversal axonal tract of the embryonic vertebrate brain. It is located in the dorsal portion of the prosomere 1, at the caudal diencephalon. The axons of the posterior commissure principally come from neurons of ventrolateral and dorsolateral pretectal nuclei (parvocellular and magnocellular nucleus of the posterior commissure, respectively) that extend their axons toward the dorsal region. The trajectory of these axons can be divided into the following three stages: (1) dorsal axon extension towards the lateral roof plate; (2) fasciculation in the lateral roof plate; and (3) midline decision of turning to the ipsilateral side or continuing to the opposite side. The mechanisms and molecules that guide the axons during these steps are unknown. In the present work, immunohistochemical and in situ hybridization analyses were performed, with results suggesting the participation of EphA7 in guiding axons from the ventral to the dorsal region of the prosomere 1 through the generation of an axonal corridor limited by repulsive EphA7 walls. At the lateral roof plate, the axons became fasciculated in presence of SCO-spondin until reaching the midline. Finally, EphA7 expression was observed in the diencephalic midline roof plate, specifically in the region where some axons turn to the ipsilateral side, suggesting its participation in this decision. In summary, the present work proposes a mechanism of posterior commissure formation orchestrated by the complementary expression of the axon guidance cues SCO-spondin and EphA7.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA