Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Biol Lett ; 19(4): 20220578, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37073526

RESUMO

Understanding how species respond to different anthropogenic pressures is essential for conservation planning. The archaeological record has great potential to inform extinction risk assessment by providing evidence on past human-caused biodiversity loss, but identifying specific drivers of past declines from environmental archives has proved challenging. We used 17 684 Holocene zooarchaeological records for 15 European large mammal species together with data on past environmental conditions and anthropogenic activities across Europe, to assess the ability of environmental archives to determine the relative importance of different human pressures in shaping faunal distributions through time. Site occupancy probability showed differing significant relationships with environmental covariates for all species, and nine species also showed significant relationships with anthropogenic covariates (human population density, % cropland, % grazing land). Across-species differences in negative relationships with covariates provide ecological insights for understanding extinction dynamics: some mammals (red deer, aurochs, wolf, wildcat, lynx, pine marten and beech marten) were more vulnerable to past human-environmental interactions, and differing single and synergistic anthropogenic factors influenced likelihood of past occurrence across species. Our results provide new evidence for pre-industrial population fragmentation and depletion in European mammals, and demonstrate the usefulness of historical baselines for understanding species' varying long-term sensitivity to multiple threats.


Assuntos
Cervos , Extinção Biológica , Humanos , Animais , Biodiversidade , Densidade Demográfica , Mamíferos , Europa (Continente) , Ecossistema , Conservação dos Recursos Naturais
3.
Ecol Lett ; 22(3): 527-537, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30616302

RESUMO

Snake venom is well known for its ability to incapacitate and kill prey. Yet, potency and the amount of venom available varies greatly across species, ranging from the seemingly harmless to those capable of killing vast numbers of potential prey. This variation is poorly understood, with comparative approaches confounded by the use of atypical prey species as models to measure venom potency. Here, we account for such confounding issues by incorporating the phylogenetic similarity between a snake's diet and the species used to measure its potency. In a comparative analysis of 102 species we show that snake venom potency is generally prey-specific. We also show that venom yields are lower in species occupying three dimensional environments and increases with body size corresponding to metabolic rate, but faster than predicted from increases in prey size. These results underline the importance of physiological and environmental factors in the evolution of predator traits.


Assuntos
Ecossistema , Venenos de Serpentes , Filogenia
4.
Ecol Lett ; 22(4): 654-663, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30724435

RESUMO

We address two fundamental ecological questions: what are the limits to animal population density and what determines those limits? We develop simple alternative models to predict population limits in relation to body mass. A model assuming that within-species area use increases with the square of daily travel distance broadly predicts the scaling of empirical extremes of minimum density across birds and mammals. Consistent with model predictions, the estimated density range for a given mass, 'population scope', is greater for birds than for mammals. However, unlike mammals and carnivorous birds, expected broad relationships between body mass and density extremes are not supported by data on herbivorous and omnivorous birds. Our results suggest that simple constraints on mobility and energy use/supply are major determinants of the scaling of density limits, but further understanding of interactions between dietary constraints and density limits are needed to predict future wildlife population responses to anthropogenic threats.


Assuntos
Aves , Carnívoros , Mamíferos , Animais , Modelos Biológicos , Densidade Demográfica
5.
J Anim Ecol ; 88(1): 125-137, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30178485

RESUMO

The assembly of species communities at local scales is thought to be driven by environmental filtering, species interactions and spatial processes such as dispersal limitation. Little is known about how the relative balance of these drivers of community assembly changes along environmental gradients, especially man-made environmental gradients associated with land-use change. Using concurrent camera- and live-trapping, we investigated the local-scale assembly of mammal communities along a gradient of land-use intensity (old-growth forest, logged forest and oil palm plantations) in Borneo. We hypothesised that increasing land-use intensity would lead to an increasing dominance of environmental control over spatial processes in community assembly. Additionally, we hypothesised that competitive interactions among species might reduce in concert with declines in α-diversity (previously documented) along the land-use gradient. To test our first hypothesis, we partitioned community variance into the fractions explained by environmental and spatial variables. To test our second hypothesis, we used probabilistic models of expected species co-occurrence patterns, in particular focussing on the prevalence of spatial avoidance between species. Spatial avoidance might indicate competition, but might also be due to divergent habitat preferences. We found patterns that are consistent with a shift in the fundamental mechanics governing local community assembly. In support of our first hypothesis, the importance of spatial processes (dispersal limitation and fine-scale patterns of home-ranging) appeared to decrease from low to high intensity land-uses, whilst environmental control increased in importance (in particular due to fine-scale habitat structure). Support for our second hypothesis was weak: whilst we found that the prevalence of spatial avoidance decreased along the land-use gradient, in particular between congeneric species pairs most likely to be in competition, few instances of spatial avoidance were detected in any land-use, and most were likely due to divergent habitat preferences. The widespread changes in land-use occurring in the tropics might be altering not just the biodiversity found in landscapes, but also the fundamental mechanics governing the local assembly of communities. A better understanding of these mechanics, for a range of taxa, could underpin more effective conservation and management of threatened tropical landscapes.


Assuntos
Biodiversidade , Floresta Úmida , Animais , Bornéu , Florestas , Mamíferos
6.
Proc Natl Acad Sci U S A ; 112(24): 7408-13, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26077906

RESUMO

The recent report from the Secretariat of the Convention on Biological Diversity [(2010) Global Biodiversity Outlook 3] acknowledges that ongoing biodiversity loss necessitates swift, radical action. Protecting undisturbed lands, although vital, is clearly insufficient, and the key role of unprotected, private land owned is being increasingly recognized. Seeking to avoid common assumptions of a social planner backed by government interventions, the present work focuses on the incentives of the individual landowner. We use detailed data to show that successful conservation on private land depends on three factors: conservation effectiveness (impact on target species), private costs (especially reductions in production), and private benefits (the extent to which conservation activities provide compensation, for example, by enhancing the value of remaining production). By examining the high-profile issue of palm-oil production in a major tropical biodiversity hotspot, we show that the levels of both conservation effectiveness and private costs are inherently spatial; varying the location of conservation activities can radically change both their effectiveness and private cost implications. We also use an economic choice experiment to show that consumers' willingness to pay for conservation-grade palm-oil products has the potential to incentivize private producers sufficiently to engage in conservation activities, supporting vulnerable International Union for Conservation of Nature Red Listed species. However, these incentives vary according to the scale and efficiency of production and the extent to which conservation is targeted to optimize its cost-effectiveness. Our integrated, interdisciplinary approach shows how strategies to harness the power of the market can usefully complement existing--and to-date insufficient--approaches to conservation.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Clima Tropical , Agricultura/economia , Animais , Análise Custo-Benefício , Indonésia , Mamíferos , Óleo de Palmeira , Óleos de Plantas/economia , Setor Privado/economia
7.
Proc Biol Sci ; 283(1827): 20152152, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27009229

RESUMO

The use of short-term indicators for understanding patterns and processes of biodiversity loss can mask longer-term faunal responses to human pressures. We use an extensive database of approximately 18,700 mammalian zooarchaeological records for the last 11,700 years across Europe to reconstruct spatio-temporal dynamics of Holocene range change for 15 large-bodied mammal species. European mammals experienced protracted, non-congruent range losses, with significant declines starting in some species approximately 3000 years ago and continuing to the present, and with the timing, duration and magnitude of declines varying individually between species. Some European mammals became globally extinct during the Holocene, whereas others experienced limited or no significant range change. These findings demonstrate the relatively early onset of prehistoric human impacts on postglacial biodiversity, and mirror species-specific patterns of mammalian extinction during the Late Pleistocene. Herbivores experienced significantly greater declines than carnivores, revealing an important historical extinction filter that informs our understanding of relative resilience and vulnerability to human pressures for different taxa. We highlight the importance of large-scale, long-term datasets for understanding complex protracted extinction processes, although the dynamic pattern of progressive faunal depletion of European mammal assemblages across the Holocene challenges easy identification of 'static' past baselines to inform current-day environmental management and restoration.


Assuntos
Distribuição Animal , Biodiversidade , Extinção Biológica , Mamíferos/fisiologia , Animais , Arqueologia , Europa (Continente) , Fósseis , Paleontologia , Especificidade da Espécie
8.
Ecol Appl ; 26(5): 1409-1420, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27755763

RESUMO

Diversity responses to land-use change are poorly understood at local scales, hindering our ability to make forecasts and management recommendations at scales which are of practical relevance. A key barrier in this has been the underappreciation of grain-dependent diversity responses and the role that ß-diversity (variation in community composition across space) plays in this. Decisions about the most effective spatial arrangement of conservation set-aside, for example high conservation value areas, have also neglected ß-diversity, despite its role in determining the complementarity of sites. We examined local-scale mammalian species richness and ß-diversity across old-growth forest, logged forest, and oil palm plantations in Borneo, using intensive camera- and live-trapping. For the first time, we were able to investigate diversity responses, as well as ß-diversity, at multiple spatial grains, and across the whole terrestrial mammal community (large and small mammals); ß-diversity was quantified by comparing observed ß-diversity with that obtained under a null model, in order to control for sampling effects, and we refer to this as the ß-diversity signal. Community responses to land use were grain dependent, with large mammals showing reduced richness in logged forest compared to old-growth forest at the grain of individual sampling points, but no change at the overall land-use level. Responses varied with species group, however, with small mammals increasing in richness at all grains in logged forest compared to old-growth forest. Both species groups were significantly depauperate in oil palm. Large mammal communities in old-growth forest became more heterogeneous at coarser spatial grains and small mammal communities became more homogeneous, while this pattern was reversed in logged forest. Both groups, however, showed a significant ß-diversity signal at the finest grain in logged forest, likely due to logging-induced environmental heterogeneity. The ß-diversity signal in oil palm was weak, but heterogeneity at the coarsest spatial grain was still evident, likely due to variation in landscape forest cover. Our findings suggest that the most effective spatial arrangement of set-aside will involve trade-offs between conserving large and small mammals. Greater consideration in the conservation and management of tropical landscapes needs to be given to ß-diversity at a range of spatial grains.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Atividades Humanas , Mamíferos , Animais , Humanos
9.
Biol Lett ; 11(12): 20150781, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26631246

RESUMO

The movement rates of sharks are intrinsically linked to foraging ecology, predator-prey dynamics and wider ecosystem functioning in marine systems. During ram ventilation, however, shark movement rates are linked not only to ecological parameters, but also to physiology, as minimum speeds are required to provide sufficient water flow across the gills to maintain metabolism. We develop a geometric model predicting a positive scaling relationship between swim speeds in relation to body size and ultimately shark metabolism, taking into account estimates for the scaling of gill dimensions. Empirical data from 64 studies (26 species) were compiled to test our model while controlling for the influence of phylogenetic similarity between related species. Our model predictions were found to closely resemble the observed relationships from tracked sharks, providing a means to infer mobility in particularly intractable species.


Assuntos
Brânquias/fisiologia , Tubarões/metabolismo , Natação/fisiologia , Animais , Peso Corporal , Brânquias/anatomia & histologia , Modelos Biológicos , Consumo de Oxigênio/fisiologia , Filogenia , Tubarões/anatomia & histologia
10.
J Wildl Manage ; 79(6): 1014-1021, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26640297

RESUMO

The random encounter model (REM) is a novel method for estimating animal density from camera trap data without the need for individual recognition. It has never been used to estimate the density of large carnivore species, despite these being the focus of most camera trap studies worldwide. In this context, we applied the REM to estimate the density of female lions (Panthera leo) from camera traps implemented in Serengeti National Park, Tanzania, comparing estimates to reference values derived from pride census data. More specifically, we attempted to account for bias resulting from non-random camera placement at lion resting sites under isolated trees by comparing estimates derived from night versus day photographs, between dry and wet seasons, and between habitats that differ in their amount of tree cover. Overall, we recorded 169 and 163 independent photographic events of female lions from 7,608 and 12,137 camera trap days carried out in the dry season of 2010 and the wet season of 2011, respectively. Although all REM models considered over-estimated female lion density, models that considered only night-time events resulted in estimates that were much less biased relative to those based on all photographic events. We conclude that restricting REM estimation to periods and habitats in which animal movement is more likely to be random with respect to cameras can help reduce bias in estimates of density for female Serengeti lions. We highlight that accurate REM estimates will nonetheless be dependent on reliable measures of average speed of animal movement and camera detection zone dimensions. © 2015 The Authors. Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.

11.
Ecol Lett ; 17(12): 1553-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25265992

RESUMO

Predator-prey relationships are vital to ecosystem function and there is a need for greater predictive understanding of these interactions. We develop a geometric foraging model predicting minimum prey size scaling in marine and terrestrial vertebrate predators taking into account habitat dimensionality and biological traits. Our model predicts positive predator-prey size relationships on land but negative relationships in the sea. To test the model, we compiled data on diets of 794 predators (mammals, snakes, sharks and rays). Consistent with predictions, both terrestrial endotherm and ectotherm predators have significantly positive predator-prey size relationships. Marine predators, however, exhibit greater variation. Some of the largest predators specialise on small invertebrates while others are large vertebrate specialists. Prey-predator mass ratios were generally higher for ectothermic than endothermic predators, although dietary patterns were similar. Model-based simulations of predator-prey relationships were consistent with observed relationships, suggesting that our approach provides insights into both trends and diversity in predator-prey interactions.


Assuntos
Tamanho Corporal , Dieta , Ecossistema , Modelos Biológicos , Comportamento Predatório , Animais
12.
Proc Biol Sci ; 280(1751): 20122122, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23193124

RESUMO

Space use is an important aspect of animal ecology, yet our understanding is limited by a lack of synthesis between interspecific and intraspecific studies. We present analyses of a dataset of 286 estimates of home range overlap from 100 primate species, with comparable samples for other space-use traits. To the best of our knowledge, this represents the first multispecies study using overlap data estimated directly from field observations. We find that space-use traits in primates are only weakly related to body mass, reflecting their largely arboreal habits. Our results confirm a theory that home range overlap explains the differences in allometric scaling between population density and home range size. We then test a suite of hypotheses to explain home range overlap, both among and within species. We find that overlap is highest for larger-bodied species living in large home ranges at high population densities, where annual rainfall is low, and is higher for arboreal than terrestrial species. Most of these results are consistent with the economics of resource defence, although the predictions of one specific theory of home range overlap are not supported. We conclude that home range overlap is somewhat predictable, but the theoretical basis of animal space use remains patchy.


Assuntos
Comportamento de Retorno ao Território Vital/fisiologia , Modelos Biológicos , Primatas/fisiologia , Comportamento Espacial/fisiologia , Animais , Peso Corporal , Análise dos Mínimos Quadrados , Observação , Filogenia , Densidade Demográfica , Especificidade da Espécie
13.
Biol Lett ; 8(4): 620-3, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22513279

RESUMO

Given the physiological limits to egg size, large-bodied non-avian dinosaurs experienced some of the most extreme shifts in size during postnatal ontogeny found in terrestrial vertebrate systems. In contrast, mammals--the other dominant vertebrate group since the Mesozoic--have less complex ontogenies. Here, we develop a model that quantifies the impact of size-specific interspecies competition on abundances of differently sized dinosaurs and mammals, taking into account the extended niche breadth realized during ontogeny among large oviparous species. Our model predicts low diversity at intermediate size classes (between approx. 1 and 1000 kg), consistent with observed diversity distributions of dinosaurs, and of Mesozoic land vertebrates in general. It also provides a mechanism--based on an understanding of different ecological and evolutionary constraints across vertebrate groups--that explains how mammals and birds, but not dinosaurs, were able to persist beyond the Cretaceous-Tertiary (K-T) boundary, and how post-K-T mammals were able to diversify into larger size categories.


Assuntos
Tamanho Corporal , Dinossauros/fisiologia , Extinção Biológica , Modelos Biológicos , Animais , Comportamento Competitivo/fisiologia , Simulação por Computador , Dinossauros/anatomia & histologia , Ecossistema , Fósseis , Aptidão Genética , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Densidade Demográfica , Dinâmica Populacional
14.
Ecol Evol ; 12(3): e8746, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342605

RESUMO

With rising urbanization, the presence of urban wildlife is becoming more common, increasing the need for wildlife-friendly spaces in urban planning. Despite this, understanding is limited to how wildlife exploits urban environments and interacts with human populations, and this is vital to our ability to manage and conserve wildlife in urban habitats. Here, we investigate how two urban mammal species, the red fox (Vulpes vulpes) and the European badger (Meles meles), exploit urban environments. Using intensive camera trap surveys, we assessed how habitat and human disturbance influenced the spatiotemporal activity of these species across south-west London. Firstly, we found elevated activity levels of both species at boundaries and within built-up areas, suggesting movement paths follow anthropogenic features. However, badgers were most active in woodland, indicating the importance of high cover habitats suitable for setts and foraging. Secondly, we found badger activity levels were negatively affected by human activity, whilst foxes were unaffected. Further investigation suggested foxes may adapt their activity patterns to avoid human disturbance, with badger activity patterns less plastic. Whilst the results of this study are useful for both the conservation and management of urban wildlife populations, these results also show potential factors which either facilitate or limit wildlife from fully exploiting urban environments.

15.
Proc Biol Sci ; 278(1718): 2682-90, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21270037

RESUMO

Identifying tradeoffs between hunting and scavenging in an ecological context is important for understanding predatory guilds. In the past century, the feeding strategy of one of the largest and best-known terrestrial carnivores, Tyrannosaurus rex, has been the subject of much debate: was it an active predator or an obligate scavenger? Here we look at the feasibility of an adult T. rex being an obligate scavenger in the environmental conditions of Late Cretaceous North America, given the size distributions of sympatric herbivorous dinosaurs and likely competition with more abundant small-bodied theropods. We predict that nearly 50 per cent of herbivores would have been within a 55-85 kg range, and calculate based on expected encounter rates that carcasses from these individuals would have been quickly consumed by smaller theropods. Larger carcasses would have been very rare and heavily competed for, making them an unreliable food source. The potential carcass search rates of smaller theropods are predicted to be 14-60 times that of an adult T. rex. Our results suggest that T. rex and other extremely large carnivorous dinosaurs would have been unable to compete as obligate scavengers and would have primarily hunted large vertebrate prey, similar to many large mammalian carnivores in modern-day ecosystems.


Assuntos
Comportamento Competitivo/fisiologia , Dinossauros/fisiologia , Comportamento Alimentar/fisiologia , Comportamento Predatório/fisiologia , Animais , Canibalismo , Ecossistema , Herbivoria , América do Norte
16.
Biol Lett ; 7(2): 312-5, 2011 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-21106569

RESUMO

Large carnivores are highly threatened, yet the processes underlying their population declines are still poorly understood and widely debated. We explored how body mass and prey abundance influence carnivore density using data on 199 populations obtained across multiple sites for 11 carnivore species. We found that relative decreases in prey abundance resulted in a five- to sixfold greater decrease in the largest carnivores compared with the smallest species. We discuss a number of possible causes for this inherent vulnerability, but also explore a possible mechanistic link between predator size, energetics and population processes. Our results have important implications for carnivore ecology and conservation, demonstrating that larger species are particularly vulnerable to anthropogenic threats to their environment, especially those which have an adverse affect on the abundance of their prey.


Assuntos
Tamanho Corporal , Carnívoros/fisiologia , Espécies em Perigo de Extinção , Comportamento Predatório , Animais , Mudança Climática , Cadeia Alimentar , Densidade Demográfica , Dinâmica Populacional
17.
Biol Lett ; 7(4): 615-8, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21450722

RESUMO

The relationship between body mass and abundance is a major focus for research in macroecology. The form of this relationship has been suggested to reflect the partitioning of energy among species. We revisit classical datasets to show that size-density relationships vary systematically among taxonomic groups, with most variation occurring at the order level. We use this knowledge to make a novel test of the 'energy equivalence rule', at the taxonomic scale appropriate for the data. We find no obvious relationship between order-specific exponents for abundance and metabolic rate, although most orders show substantially shallower (less negative) scaling than predicted by energy equivalence. This finding implies greater energy flux among larger-bodied animals, with the largest species using two orders of magnitude more energy than the smallest. Our results reject the traditional interpretation of energy equivalence as a predictive rule. However, some variation in size-density exponents is consistent with a model of geometric constraints on foraging.


Assuntos
Tamanho Corporal , Metabolismo Energético , Animais , Densidade Demográfica
20.
Ecol Evol ; 11(23): 17219-17237, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34938504

RESUMO

The spotted hyena (Crocuta crocuta Erxleben) and the lion (Panthera leo Linnaeus) are two of the most abundant and charismatic large mammalian carnivores in Africa and yet both are experiencing declining populations and significant pressures from environmental change. However, with few exceptions, most studies have focused on influences upon spotted hyena and lion populations within individual sites, rather than synthesizing data from multiple locations. This has impeded the identification of over-arching trends behind the changing biomass of these large predators. Using partial least squares regression models, influences upon population biomass were therefore investigated, focusing upon prey biomass, temperature, precipitation, and vegetation cover. Additionally, as both species are in competition with one other for food, the influence of competition and evidence of environmental partitioning were assessed. Our results indicate that spotted hyena biomass is more strongly influenced by environmental conditions than lion, with larger hyena populations in areas with warmer winters, cooler summers, less drought, and more semi-open vegetation cover. Competition was found to have a negligible influence upon spotted hyena and lion populations, and environmental partitioning is suggested, with spotted hyena population biomass greater in areas with more semi-open vegetation cover. Moreover, spotted hyena is most heavily influenced by the availability of medium-sized prey biomass, whereas lion is influenced more by large size prey biomass. Given the influences identified upon spotted hyena populations in particular, the results of this study could be used to highlight populations potentially at greatest risk of decline, such as in areas with warming summers and increasingly arid conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA