Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(18): 7017-7026, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38950140

RESUMO

Deep eutectic solvents (DESs) have attracted increasing attention in recent years due to their broad applicability in different fields, but their computer-aided discovery, which avoids a time-consuming trial-and-error investigation, is still lagging. In this paper, a set of nine DESs, composed of choline chloride as a hydrogen-bond acceptor and nine functionalized phenols as hydrogen bond donors, is simulated by using classical molecular dynamics to investigate the possible formation of a DES. The tool of the Voronoi tessellation analysis is employed for producing an intuitive and straightforward representation of the degree of mixing between the different components of the solutions, therefore permitting the definition of a metric quantifying the propensity of the components to produce a uniform solution. The computational findings agree with the experimental results, thus confirming that the Voronoi tessellation analysis can act as a lightweight yet powerful approach for the high-throughput screening of mixtures in the optics of the new DES design.


Assuntos
Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Colina/química , Solventes Eutéticos Profundos/química , Fenóis/química , Solventes/química
2.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473955

RESUMO

Within the framework of plant biostimulation, a pivotal role is played by the achievement of low-cost, easily prepared nanoparticles for priming purposes. Therefore, in this report, two different synthetic strategies are described to engineer zinc oxide nanoparticles with an inulin coating. In both protocols, i.e., two-step and gel-like one-pot protocols, nanoparticles with a highly pure ZnO kernel are obtained when the reaction is carried out at T ≥ 40 °C, as ascertained by XRD and ATR/FTIR studies. However, a uniformly dispersed, highly homogeneous coating is achieved primarily when different temperatures, i.e., 60 °C and 40 °C, are employed in the two phases of the step-wise synthesis. In addition, a different binding mechanism, i.e., complexation, occurs in this case. When the gel-like process is employed, a high degree of coverage by the fructan is attained, leading to micrometric coated aggregates of nanometric particles, as revealed by SEM investigations. All NPs from the two-step synthesis feature electronic bandgaps in the 3.25-3.30 eV range in line with previous studies, whereas the extensive coating causes a remarkable 0.4 eV decrease in the bandgap. Overall, the global analysis of the investigations indicates that the samples synthesized at 60 °C and 40 °C are the best suited for biostimulation. Proof-of-principle assays upon Vicia faba seed priming with Zn5 and Zn5@inu indicated an effective growth stimulation of seedlings at doses of 100 mgKg-1, with concomitant Zn accumulation in the leaves.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/química , Inulina/farmacologia , Nanopartículas/química , Plântula , Nanopartículas Metálicas/química , Antibacterianos/farmacologia
3.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139445

RESUMO

Drastic climate changes over the years have triggered environmental challenges for wild plants and crops due to fluctuating weather patterns worldwide. This has caused different types of stressors, responsible for a decrease in plant life and biological productivity, with consequent food shortages, especially in areas under threat of desertification. Nanotechnology-based approaches have great potential in mitigating environmental stressors, thus fostering a sustainable agriculture. Zinc oxide nanoparticles (ZnO NPs) have demonstrated to be biostimulants as well as remedies to both environmental and biotic stresses. Their administration in the early sowing stages, i.e., seed priming, proved to be effective in improving germination rate, seedling and plant growth and in ameliorating the indicators of plants' well-being. Seed nano-priming acts through several mechanisms such as enhanced nutrients uptake, improved antioxidant properties, ROS accumulation and lipid peroxidation. The target for seed priming by ZnO NPs is mostly crops of large consumption or staple food, in order to meet the increased needs of a growing population and the net drop of global crop frequency, due to climate changes and soil contaminations. The current review focuses on the most recent low-cost, low-sized ZnO NPs employed for seed nano-priming, to alleviate abiotic and biotic stresses, mitigate the negative effects of improper storage and biostimulate plants' growth and well-being. Taking into account that there is large variability among ZnO NPs and that their chemico-physical properties may play a role in determining the efficacy of nano-priming, for all examined cases, it is reported whether the ZnO NPs are commercial or lab prepared. In the latter cases, the preparation conditions are described, along with structural and morphological characterizations. Under these premises, future perspectives and challenges are discussed in relation to structural properties and the possibility of ZnO NPs engineering.


Assuntos
Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Sementes , Estresse Fisiológico , Produtos Agrícolas
4.
Chemistry ; 28(25): e202104552, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35244293

RESUMO

Three novel diketopyrrolopyrrole (DPP) based small molecules have been synthesized and characterized in terms of their chemical-physical, electrochemical and electrical properties. All the molecules consist of a central DPP electron acceptor core symmetrically functionalized with donor bi-thienyl moieties and flanked in the terminal positions by three different auxiliary electron-acceptor groups. This kind of molecular structure, characterized by an alternation of electron acceptor and donor groups, was purposely designed to provide a significant absorption at the longer wavelengths of the visible spectrum: when analysed as thin films, in fact, the dyes absorb well over 800 nm and exhibit a narrow optical bandgap down to 1.28 eV. A detailed DFT analysis provides useful information on the electronic structure of the dyes and on the features of the main optical transitions. Organic field-effect transistors (OFETs) have been fabricated by depositing the DPP dyes as active layers from solution: the different end-functionalization of the dyes had an effect on the charge-transport properties with two of the dyes acting as n-type semiconductors (electron mobility up to 4.4 ⋅ 10-2  cm2 /V ⋅ s) and the third one as a p-type semiconductor (hole mobility up to 2.3 ⋅ 10-3  cm2 /V ⋅ s). Interestingly, well-balanced ambipolar transistors were achieved by blending the most performant n-type and p-type dyes with hole and electron mobility in the order of 10-3  cm2 /V ⋅ s.

5.
Int J Mol Sci ; 23(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35682687

RESUMO

Amyloid-ß peptide (Aß) aggregates are known to be correlated with pathological neurodegenerative diseases. The fibril formation process of such peptides in solution is influenced by several factors, such as the ionic strength of the buffer, concentration, pH, and presence of other molecules, just to mention a few. In this paper, we report a detailed analysis of in vitro Aß42 fibril formation in the presence of cortisol at different relative concentrations. The thioflavin T fluorescence assay allowed us to monitor the fibril formation kinetics, while a morphological characterization of the aggregates was obtained by atomic force microscopy. Moreover, infrared absorption spectroscopy was exploited to investigate the secondary structure changes along the fibril formation path. Molecular dynamics calculations allowed us to understand the intermolecular interactions with cortisol. The combined results demonstrated the influence of cortisol on the fibril formation process: indeed, at cortisol-Aß42 concentration ratio (ρ) close to 0.1 a faster organization of Aß42 fragments into fibrils is promoted, while for ρ = 1 the formation of fibrils is completely inhibited.


Assuntos
Peptídeos beta-Amiloides , Hidrocortisona , Amiloide/química , Peptídeos beta-Amiloides/química , Cinética , Fragmentos de Peptídeos/química
6.
Molecules ; 27(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408444

RESUMO

Deep Eutectic Solvents have gained a lot of attention in the last few years because of their vast applicability in a large number of technological processes, the simplicity of their preparation and their high biocompatibility and harmlessness. One of the fields where DES prove to be particularly valuable is the synthesis and modification of inorganic materials-in particular, nanoparticles. In this field, the inherent structural inhomogeneity of DES results in a marked templating effect, which has led to an increasing number of studies focusing on exploiting these new reaction media to prepare nanomaterials. This review aims to provide a summary of the numerous and most recent achievements made in this area, reporting several examples of the newest mixtures obtained by mixing molecules originating from natural feedstocks, as well as linking them to the more consolidated methods that use "classical" DES, such as reline.


Assuntos
Nanopartículas , Nanoestruturas , Nanopartículas/química , Solventes/química
7.
Molecules ; 27(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35684430

RESUMO

Due to the increasing tattoo practicing in Eastern countries and general concern on tattoo ink composition and safety, the green tattoo inks Green Concentrate by Eternal, for European and "for Asia Market Only" were analyzed, under the premise that only the former falls under a composition regulation. A separation of the additives from the pigment was carried out by successive extraction in solvents of different polarities, i.e., water, acetone and dichloromethane. The solid residues were analyzed by IR and Raman spectroscopies, the liquid fractions by GC/mass spectrometry. The relative pigment load and element traces were also estimated. We found that the European and the Asian inks are based on the same pigment, PG7, restricted in Europe, though at different loads. They have a similar content of harmful impurities, such as Ni, As, Cd and Sb and both contain siloxanes, including harmful D4. Furthermore, they have different physical-chemical properties, the European ink being more hydrophilic, the Asian more hydrophobic. Additionally, the Asian ink contains harmful additives for the solubilization of hydrophobic matrices and by-products of the phthalocyanine synthesis. Teratogenic phthalates are present as well as chlorinated teratogenic and carcinogenic compounds usually associated to the laser treatment for removal purposes, to a larger extent in the European ink. The composition of the inks does not seem to reflect regulatory restrictions, where issued.


Assuntos
Tinta , Tatuagem , Ásia , Corantes/química , Espectrometria de Massas , Análise Espectral Raman/métodos
8.
Arch Toxicol ; 95(7): 2367-2383, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33948695

RESUMO

Comparative laser and thermal treatments were carried out on PG36, a green phthalocyanine-based pigment, permitted in European countries where legislation on tattoo composition was issued. Prior to the treatments, PG36 was characterized by SEM imaging, EDX, IR and UV-Vis spectroscopies, revealing an excess of Si and C and O as compared to the pure halogenated Cu-phthalocyanine. Laser treatments were carried out with a Nd:YAG device applied to H2O and propan-2-ol dispersions. Pyrolysis and calcinations were carried out in air or under N2 flow. The outcome of the different procedures was analyzed by UV-Vis spectroscopy, GC-mass spectrometry, X-ray diffraction of the solid residues, SEM microscopy and dynamic light scattering. The comparative analysis indicated the production of different fragment compounds depending on the treatment, (pyrolysis or laser), and, to some extent, to the solvent of the dispersion, with pyrolysis generating a larger number of hazardous compounds. Hydrocarbons and cyclic siloxanes present as additives in PG36 were stable or degraded depending on the treatment. The morphology of the products is also treatment-dependent with nanoparticles < 20 nm and fibers being produced upon laser treatments only. Based on the experimental findings, the equivalence of laser and thermal treatments is evaluated.


Assuntos
Lasers de Estado Sólido , Tatuagem , Difusão Dinâmica da Luz , Europa (Continente) , Indóis
9.
Sensors (Basel) ; 21(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34640679

RESUMO

Water pollution caused by hexavalent chromium (Cr(VI)) ions represents a serious hazard for human health due to the high systemic toxicity and carcinogenic nature of this metal species. The optical sensing of Cr(VI) through specifically engineered nanomaterials has recently emerged as a versatile strategy for the application to easy-to-use and cheap monitoring devices. In this study, a one-pot oxidative method was developed for the cage opening of C60 fullerene and the synthesis of stable suspensions of N-doped carbon dots in water-THF solutions (N-CDs-W-THF). The N-CDs-W-THF selectively showed variations of optical absorbance in the presence of Cr(VI) ions in water through the arising of a distinct absorption band peaking at 550 nm, i.e., in the transparency region of pristine material. Absorbance increased linearly, with the ion concentration in the range 1-100 µM, thus enabling visual and ratiometric determination with a limit of detection (LOD) of 300 nM. Selectivity and possible interference effects were tested over the 11 other most common heavy metal ions. The sensing process occurred without the need for any other reactant or treatment at neutral pH and within 1 min after the addition of chromium ions, both in deionized and in real water samples.


Assuntos
Fulerenos , Carbono , Cromo/toxicidade , Colorimetria , Humanos , Íons , Água
10.
Molecules ; 26(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34576990

RESUMO

In this work, we investigate by ab initio calculations and optical experiments the sensitivity of graphene quantum dots in their use as devices to measure the presence, and concentration, of heavy metals in water. We demonstrate that the quenching or enhancement in the optical response (absorption, emission) depends on the metallic ion considered. In particular, two cases of opposite behaviour are considered in detail: Cd2+, where we observe an increase in the emission optical response for increasing concentration, and Pb2+ whose emission spectra, vice versa, are quenched along the concentration rise. The experimental trends reported comply nicely with the different hydration patterns suggested by the models that are also capable of reproducing the minor quenching/enhancing effects observed in other ions. We envisage that quantum dots of graphene may be routinely used as cheap detectors to measure the degree of poisoning ions in water.

11.
Arch Toxicol ; 94(7): 2359-2375, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32472170

RESUMO

Since tattoos became overwhelmingly fashionable worldwide, the demand for removal has proportionally increased, Nd:YAG Q-switch laser being the most commonly used tool for the purpose. In this framework we investigated the composition and products of laser treatment of green tattoo ink, the Green Concentrate from Eternal. The ink characterization has been carried out by IR, UV-Vis, EDX spectroscopies, and SEM imaging. It revealed the presence of the pigment PG7, rather than PG36 as reported on the bottle label, along with non-fully halogenated analogues. The morphology is an extended sheath with embedded grains. Subsequent laser treatments were performed on both dried and extracted inks, dispersed either in water or in propan-2-ol, chosen for their different polarities, as it is the case in the skin layers. The products were analyzed by gas chromatography-mass spectrometry, UV-Vis spectroscopy, SEM imaging, and dynamic light scattering. The outcome is a complex fragmentation pattern that depends both on the solvent and on the initial aggregation state. The fragment compounds are toxic at various degrees according to the Classification Labelling and Packaging regulations. Several shapes of aggregates are produced as an effect of both downsizing and re-aggregation, with potentially harmful aspect ratios.


Assuntos
Corantes/efeitos da radiação , Corantes/toxicidade , Indóis/efeitos da radiação , Indóis/toxicidade , Tinta , Terapia a Laser/efeitos adversos , Lasers de Estado Sólido/efeitos adversos , Tatuagem , Qualidade de Produtos para o Consumidor , Difusão Dinâmica da Luz , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Terapia a Laser/instrumentação , Microscopia Eletrônica de Varredura , Medição de Risco , Espectrofotometria Ultravioleta
12.
Org Biomol Chem ; 17(5): 1113-1120, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30633293

RESUMO

The self-aggregation of inherently chiral, (l)-proline functionalised Cu and Zn porphyrin derivatives has been investigated in different aqueous organic solvent media. The results indicate that the title species form self-assembled structures expressing supramolecular chirality by the amplification of the stereochemical information stored on the l-prolinate functionality. A substantial difference of the aggregation modes, and the chiroptical features of the final supramolecular species for the two investigated complexes, is clearly imputable to the metal ions, having a different coordination ability toward solvent molecules. Detailed kinetic investigation performed by combining different spectroscopy techniques allowed the definition of the reaction mechanisms involved in these processes. The results described are of importance, for example, for the achievement of stereoselective devices and sensors.

13.
Biochim Biophys Acta ; 1850(11): 2304-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26235337

RESUMO

The pH regulation has a fundamental role in several intracellular processes and its variation via exogenous compounds is a potential tool for intervening in the intracellular processes. Proton caged compounds (PPCs) release protons upon UV irradiation and may efficiently provoke intracellular on-command acidification. Here, we explore the intracellular pH variation, when purposely synthesized PCCs are coupled to gold nanoparticles (AuNPs) and dosed to HEK-293 cells. We detected the acidification process caused by the UV irradiation by monitoring the intensity of the asymmetric stretching mode of the CO(2) molecule at 2343 cm(-1). The comparison between free and AuNPs functionalized proton caged compound demonstrates a highly enhanced CO(2) yield, hence pH variation, in the latter case. Finally, PCC functionalized AuNPs were marked with a purposely synthesized fluorescent marker and dosed to HEK-293 cells. The corresponding fluorescence optical images show green grains throughout the whole cytoplasm.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Prótons , Fluorescência , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio
14.
Eur Biophys J ; 45(6): 565-71, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27017356

RESUMO

A proton caged compound, the 1-(2-nitrophenyl)- ethylhexadecyl sulfonate (HDNS), was dosed into HEK-293 at different incubation times. Samples were irradiated with filtered UV light for inducing photolysis of the HDNS and then probed by infrared spectroscopy. The intracellular acidification reaction can be followed by monitoring the consequent CO2 peak intensity variation. The total CO2 produced is similar for all the samples, hence it is only a function of the initial HDNS concentration. The way it is achieved, though, is different for the different incubation times and follows kinetics, which results in a combination of a linear CO2 increase and a steep CO2 increase followed by a decay. This is interpreted in terms of confinement of the HDNS into intracellular vesicles of variable average size and sensitive to UV light when they reach critical dimensions.


Assuntos
Espaço Intracelular/química , Espaço Intracelular/efeitos dos fármacos , Prótons , Ácidos Sulfônicos/farmacologia , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Espaço Intracelular/metabolismo
15.
Biochim Biophys Acta ; 1830(4): 2989-93, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23291426

RESUMO

BACKGROUND: The pH of a biological system is a crucial determinant of the structures and reactivity of its components and cellular homeostasis of H(+) is critical for cell viability. Control and monitoring of cellular acidity are highly desirable for the purpose of studying biochemical processes in vivo. METHODS: The effect of photolysis of a caged strong acid, the ester 1-(2-nitrophenyl)-ethylhexadecyl sulfonate (HDNS) is used to cause a controlled drop in pH in single cells. An isolated cell is selected under the IR microscope, irradiated with near-UV light and monitored by FTIR. RESULTS: We demonstrate the use of FTIR spectromicroscopy to monitor light-induced acidification of the cellular medium by measuring the increased concentration of CO2 and corresponding decrease of HCO3(-) in the cell and in the surrounding medium. CONCLUSIONS: We have demonstrated a method to control and accurately monitor the changes in pH of a cellular system by coupling a caged proton-releasing agent with FTIR spectromicroscopy detection. The overall implementation of photolysis and spectroscopic detection in a microscope optical configuration ensures single cell selectivity in both acidification and monitoring. We show the viability of monitoring of pH changes by FTIR spectromicroscopy with sensitivity comparable to that of glass electrodes, better than the existing methods for determining cell pH. GENERAL SIGNIFICANCE: Reporting the effect of small variations of cellular acidity provides a major improvement in the understanding of the interplay between molecular properties as assessed in vitro and cell physiology.


Assuntos
Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Animais , Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Camundongos , Células NIH 3T3 , Fotólise
16.
Materials (Basel) ; 17(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39203249

RESUMO

This study investigates the nanostructure of two protic ionic liquids (PILs), [N0 0 0 3][C3CO2] and [N0 0 0 4][C2CO2], with similar polar head groups but varying alkyl chain lengths. An X-ray scattering technique and molecular dynamics simulations have been utilized to characterize the bulk and interfacial properties of these PILs. The findings suggest that the nanostructure of the PILs is primarily determined by the electrostatic forces between charged functional groups playing a dominant role. Despite differences in the alkyl chain lengths, the PILs possess remarkably similar nanostructures. Extending our investigation, we report the impact of water on the nanostructure. Our findings reveal that the addition of water disrupts interactions between cations and anions, weakening Coulombic forces. The disruptive behavior is attributed to the establishment of hydrogen bonds between water and ions. This comprehensive approach provides valuable insights into the nuanced factors shaping the nanostructure of these PILs, which are crucial for tailoring their applications in synthetic chemistry, catalysis, and beyond.

17.
Nanomaterials (Basel) ; 13(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37947668

RESUMO

In the present work, a simple two-step method is proposed for mixed oxide synthesis aimed at the achievement of antibacterial nanomaterials. In particular, Cu, Zn and Co have been selected to achieve single-, double- and triple-cation oxides. The synthesized samples are characterized by XRD, IR, SEM and EDX, indicating the formation of either crystalline or amorphous hydrocarbonate precursors. The oxides present one or two crystalline phases, depending on their composition; the triple-cation oxides form a solid solution of tenorite. Also, the morphology of the samples varies with the composition, yielding nanoparticles, filaments and hydrangea-like microaggregates. The antibacterial assays are conducted against E. coli and indicate an enhanced efficacy, especially displayed by the oxide containing 3% Co and 9% Zn incorporated into the CuO lattice. The oxides with the highest antibacterial properties are tested for their cytotoxicity, indicating a low toxicity impact, in line with literature data.

18.
Materials (Basel) ; 16(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37445114

RESUMO

The link between morphology and properties is well-established in the nanoparticle literature. In this report, we show that different approaches in the synthesis of copper oxide can lead to nanoparticles (NPs) of different size and morphology. The structure and properties of the synthesized NPs are investigated with powder X-ray diffraction, scanning electron microscopy (SEM), and diffuse reflectance spectroscopy (DRS). Through detailed SEM analyses, we were able to correlate the synthetic pathways with the particles' shape and aggregation, pointing out that bare hydrothermal pathways yield mainly spheroidal dandelion-like aggregates, whereas, if surfactants are added, the growth of the nanostructures along a preferential direction is promoted. The effect of the morphology on the electronic properties was evaluated through DRS, which allowed us to obtain the electron bandgap in every system synthesized, and to find that the rearrangement of threaded particles into more compact structures leads to a reduction in the energy difference. The latter result was compared with Density Functional Theory (DFT) computational models of small centrosymmetric CuO clusters, cut from the tenorite crystal structure. The computed UV-Vis absorption spectra obtained from the clusters are in good agreement with experimental findings.

19.
Inorg Chem ; 51(13): 7332-9, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22702417

RESUMO

The new metal-organic compound nickel(II) 3,4;9,10-perylenediimide bis-phosphonate pentahydrate, i.e. Ni(2)[(PDI-BP)(H(2)O)(2)]·3H(2)O (1), has been synthesized and its structural and magnetic properties have been studied. Reaction of 3,4;9,10-perylenediimide bis-phosphonate (PDI-BP, hereafter) ligand and nickel chloride in water resulted in the precipitation of a red and poorly crystalline solid (1). As the solid shows a poor crystalline organization of aggregates, the energy dispersive X-ray diffraction analysis (EDXD) technique has been used to obtain short-range order structural information of the single nanoaggregates by radial distribution function analysis. The overall structure of the compound is characterized by layers containing perylene planes shifted in the direction perpendicular to the stacking axes in such a way that only the outer rings overlap. The edges of the perylene planes are connected to the phosphonate groups through an imido group. The oxygen atoms of the [-PO(3)](2-) group and those of the water molecules are bonded to the nickel ions resulting in a [NiO(6)] octahedral coordination sphere. The Ni-O bond lengths are 0.21 ± 0.08 nm and the Ni-O-Ni angles of aligned moieties are 95 ± 2°. The oxygen atoms of the water molecules and the nickel atoms are nearly planar and almost perpendicular to the perylene planes forming chains of edge-sharing octahedra. The magnetic properties of (1) show the presence of intrachain ferromagnetic Ni-Ni interactions and a long-range ferromagnetic order below 21 K with a canting angle and with a spin glasslike behavior due to disorder in the inorganic layer. Hysteresis cycles show a coercive field of ca. 272 mT at 2 K that decreases as the temperature is increased and vanishes at ca. 20 K.

20.
ACS Omega ; 7(51): 47449-47461, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591154

RESUMO

An outline of the advantages, in terms of sustainability, of Deep Eutectic Solvents (DESs) is provided, by analyzing some of the most popular DESs, obtained by the combination of choline chloride, as a hydrogen bond acceptor, and six hydrogen bond donors. The analysis is articulated into four main issues related to sustainability, which are recurrently mentioned in the literature, but are often taken for granted without any further critical elaboration, as the prominent green features of DESs: their low toxicity, good biodegradability, renewable sourcing, and low cost. This contribution is intended to provide a more tangible, evidence-based evaluation of the actual green credentials of the considered DESs, to reinforce or question their supposed sustainability, also in mutual comparison with one another.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA