Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 152, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38183477

RESUMO

Trichothecenes are a structurally diverse family of toxic secondary metabolites produced by certain species of multiple fungal genera. All trichothecene analogs share a core 12,13-epoxytrichothec-9-ene (EPT) structure but differ in presence, absence and types of substituents attached to various positions of EPT. Formation of some of the structural diversity begins early in the biosynthetic pathway such that some producing species have few trichothecene biosynthetic intermediates in common. Cytochrome P450 monooxygenases (P450s) play critical roles in formation of trichothecene structural diversity. Within some species, relaxed substrate specificities of P450s allow individual orthologs of the enzymes to modify multiple trichothecene biosynthetic intermediates. It is not clear, however, whether the relaxed specificity extends to biosynthetic intermediates that are not produced by the species in which the orthologs originate. To address this knowledge gap, we used a mutant complementation-heterologous expression analysis to assess whether orthologs of three trichothecene biosynthetic P450s (TRI11, TRI13 and TRI22) from Fusarium sporotrichioides, Trichoderma arundinaceum, and Paramyrothecium roridum can modify trichothecene biosynthetic intermediates that they do not encounter in the organism in which they originated. The results indicate that TRI13 and TRI22 could not modify the intermediates that they do not normally encounter, whereas TRI11 could modify an intermediate that it does not normally encounter. These findings indicate that substrate promiscuity varies among trichothecene biosynthetic P450s. One structural feature that likely impacts the ability of the P450s to use biosynthetic intermediates as substrates is the presence and absence of an oxygen atom attached to carbon atom 3 of EPT.


Assuntos
Sistema Enzimático do Citocromo P-450 , Tricotecenos , Especificidade por Substrato , Sistema Enzimático do Citocromo P-450/genética , Metabolismo Secundário
2.
Appl Microbiol Biotechnol ; 106(21): 7153-7171, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36166052

RESUMO

The fungus Trichoderma arundinaceum exhibits biological control activity against crop diseases caused by other fungi. Two mechanisms that likely contribute to this activity are upregulation of plant defenses and production of two types of antifungal secondary metabolites: the sesquiterpenoid harzianum A (HA) and the polyketide-derived aspinolides. The goal of the current study was to identify aspinolide biosynthetic genes as part of an effort to understand how these metabolites contribute to the biological control activity of T. arundinaceum. Comparative genomics identified two polyketide synthase genes (asp1 and asp2) that occur in T. arundinaceum and Aspergillus ochraceus, which also produces aspinolides. Gene deletion and biochemical analyses in T. arundinaceum indicated that both genes are required for aspinolide production: asp2 for formation of a 10-member lactone ring and asp1 for formation of a butenoyl subsituent at position 8 of the lactone ring. Gene expression and comparative genomics analyses indicated that asp1 and asp2 are located within a gene cluster that occurs in both T. arundinaceum and A. ochraceus. A survey of genome sequences representing 35 phylogenetically diverse Trichoderma species revealed that intact homologs of the cluster occurred in only two other species, which also produced aspinolides. An asp2 mutant inhibited fungal growth more than the wild type, but an asp1 mutant did not, and the greater inhibition by the asp2 mutant coincided with increased HA production. These findings indicate that asp1 and asp2 are aspinolide biosynthetic genes and that loss of either aspinolide or HA production in T. arundinaceum can be accompanied by increased production of the other metabolite(s). KEY POINTS: • Two polyketide synthase genes are required for aspinolide biosynthesis. • Blocking aspinolide production increases production of the terpenoid harzianum A. • Aspinolides and harzianum A act redundantly in antibiosis of T. arundinaceum.


Assuntos
Policetídeos , Sesquiterpenos , Trichoderma , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Regulação Fúngica da Expressão Gênica , Antifúngicos/metabolismo , Trichoderma/metabolismo , Terpenos/metabolismo , Sesquiterpenos/metabolismo , Lactonas/metabolismo , Policetídeos/metabolismo
3.
PLoS Pathog ; 14(4): e1006946, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29649280

RESUMO

Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus Fusarium are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some Fusarium species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (TRI) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in TRI gene duplication and number of TRI loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the TRI cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of TRI cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungi.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Micotoxinas/química , Filogenia , Trichoderma/genética , Tricotecenos/química , DNA Fúngico , Genômica , Micotoxinas/farmacologia , Trichoderma/efeitos dos fármacos , Trichoderma/crescimento & desenvolvimento , Tricotecenos/farmacologia
4.
J Integr Plant Biol ; 62(7): 927-947, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31436383

RESUMO

Trichoderma biocontrol strains establish a complex network of interactions with plants, in which diverse fungal molecules are involved in the recognition of these fungi as nonpathogenic organisms. These molecules act as microbial-associated molecular patterns that trigger plant responses. Previous studies have reported the importance of ergosterol produced by Trichoderma spp. for the ability of these fungi to induce plant growth and defenses. In addition, squalene, a sterol biosynthetic intermediate, seems to play an important role in these interactions. Here, we analyzed the effect of different concentrations of ergosterol and squalene on tomato (Solanum lycopersicum) growth and on the transcription level of defense- and growth-related genes. We used an RNA-seq strategy to identify several tomato genes encoding predicted pattern recognition receptor proteins or WRKY transcription factors, both of which are putatively involved in the perception and response to ergosterol and squalene. Finally, an analysis of Arabidopsis thaliana mutants lacking the genes homologous to these tomato candidates led to the identification of a WRKY40 transcription factor that negatively regulates salicylic acid-related genes and positively regulates ethylene- and jasmonate-related genes in the presence of ergosterol and squalene.


Assuntos
Ergosterol/metabolismo , Genes de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Esqualeno/metabolismo , Trichoderma/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis/metabolismo , Ciclopentanos/metabolismo , Ergosterol/farmacologia , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Mutação/genética , Micélio/efeitos dos fármacos , Micélio/metabolismo , Nitrogênio/metabolismo , Oxilipinas/metabolismo , Fenótipo , Esqualeno/farmacologia , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
5.
Fungal Genet Biol ; 122: 31-46, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30439446

RESUMO

Production of trichothecene toxins occurs in phylogenetically diverse fungi with different lifestyles. In these fungi, most homologs of the trichothecene biosynthetic gene cluster include the transcription factor genes tri6 and tri10. Analyses of phytopathogenic species of Fusarium indicate that the TRI6 and TRI10 proteins positively regulate genes required for synthesis of trichothecenes as well as farnesyl diphosphate (FPP), a precursor of the trichothecene and other terpenoids (e.g., ergosterol). However, the apparent absence of tri6 and tri10 in some trichothecene-producing fungi, and the presence of multiple paralogs of the genes in others suggest considerable variability in genetic regulation of trichothecene biosynthesis. To begin to investigate this variability, we functionally characterized tri10 in the saprotrophic fungus Trichoderma arundinaceum. We found that TRI10 is required for wild-type expression of tri genes and trichothecene production during the first 12 h of growth of T. arundinaceum. Comparison of the effect of tri10 deletion in T. arundinaceum and Fusarium species has provided evidence for similarities in the genetic regulation of trichothecene biosynthesis in these two fungi with different lifestyles. In contrast to trichothecenes, tri10 deletion increased production of ergosterol and the polyketide-derived metabolites aspinolides, which is more likely caused by an increase in the intracellular pool of FPP resulting from loss of trichothecene production. Furthermore, although it is unclear how TRI10 affects polyketide production, one possibility is that it does so by rechanneling terpene precursors.


Assuntos
Vias Biossintéticas/genética , Proteínas Fúngicas/genética , Terpenos/metabolismo , Trichoderma/genética , Ergosterol/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Deleção de Sequência , Trichoderma/metabolismo
6.
Appl Microbiol Biotechnol ; 103(19): 8087-8103, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31384992

RESUMO

Trichothecenes are sesquiterpene toxins produced by diverse fungi, including some species of Trichoderma that are potential plant disease biocontrol agents. Trichoderma arundinaceum produces the trichothecene harzianum A (HA), which consists of the core trichothecene structure (12,13-epoxytrichothec-9-ene, EPT) with a linear polyketide-derived substituent (octa-2,4,6-trienedioyl) esterified to an oxygen at carbon atom 4. The genes required for biosynthesis of EPT and the eight-carbon polyketide precursor of the octa-2,4,6-trienedioyl substituent, as well as for esterification of the substituent to EPT have been described. However, genes required for conversion of the polyketide (octa-2,4,6-trienoic acid) to octa-2,4,6-trienedioyl-CoA, the immediate precursor of the substituent, have not been described. Here, we identified 91 cytochrome P450 monooxygenase genes in the genome sequence of T. arundinaceum, and provided evidence from gene deletion, complementation, cross-culture feeding, and chemical analyses that one of them (tri23) is required for conversion of octa-2,4,6-trienoic acid to octa-2,4,6-trienedioyl-CoA. The gene was detected in other HA-producing Trichoderma species, but not in species of other fungal genera that produce trichothecenes with an octa-2,4,6-trienoic acid-derived substituent. These findings indicate that tri23 is a trichothecene biosynthetic gene unique to Trichoderma species, which in turn suggests that modification of octa-2,4,6-trienoic acid during trichothecene biosynthesis has evolved independently in some fungi.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Trichoderma/enzimologia , Trichoderma/metabolismo , Tricotecenos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Ácidos Graxos Insaturados/metabolismo , Deleção de Genes , Teste de Complementação Genética , Trichoderma/genética
7.
Molecules ; 24(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652666

RESUMO

Trichothecene mycotoxins are recognized as highly bioactive compounds that can be used in the design of new useful bioactive molecules. In Trichoderma brevicompactum, the first specific step in trichothecene biosynthesis is carried out by a terpene cyclase, trichodiene synthase, that catalyzes the conversion of farnesyl diphosphate to trichodiene and is encoded by the tri5 gene. Overexpression of tri5 resulted in increased levels of trichodermin, a trichothecene-type toxin, which is a valuable tool in preparing new molecules with a trichothecene skeleton. In this work, we developed the hemisynthesis of trichodermin and trichodermol derivatives in order to evaluate their antimicrobial and cytotoxic activities and to study the chemo-modulation of their bioactivity. Some derivatives with a short chain at the C-4 position displayed selective antimicrobial activity against Candida albicans and they showed MIC values similar to those displayed by trichodermin. It is important to highlight the cytotoxic selectivity observed for compounds 9, 13, and 15, which presented average IC50 values of 2 µg/mL and were cytotoxic against tumorigenic cell line MCF-7 (breast carcinoma) and not against Fa2N4 (non-tumoral immortalized human hepatocytes).


Assuntos
Tricodermina/análogos & derivados , Animais , Antibacterianos/síntese química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Linhagem Celular , Feminino , Hepatócitos/efeitos dos fármacos , Humanos , Células MCF-7 , Micotoxinas/farmacologia , Coelhos , Trichoderma/enzimologia , Trichoderma/genética , Trichoderma/metabolismo , Tricodermina/síntese química , Tricodermina/química , Tricodermina/farmacologia
8.
Fungal Genet Biol ; 119: 29-46, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30121242

RESUMO

Trichothecenes are terpenoid toxins produced by multiple fungal species with diverse lifestyles. In these fungi, the trichothecene biosynthetic gene (tri) cluster includes a gene encoding a Cys2His2 Zn-finger protein (TRI6). Analyses of plant pathogenic Fusarium species indicate that tri6 regulates tri gene expression. Here, we analyzed TRI6 function in the saprotrophic fungus Trichoderma arundinaceum, which produces the antimicrobial trichothecene harzianum A (HA). Deletion of the TRI6-encoding gene, tri6, blocked HA production and reduced expression of tri genes, and mevalonate biosynthetic genes required for synthesis of farnesyl diphosphate (FPP), the primary metabolite that feeds into trichothecene biosynthesis. In contrast, tri6 deletion did not affect expression of ergosterol biosynthetic genes required for synthesis of ergosterol from FPP, but did increase ergosterol production, perhaps because increased levels of FPP were available for ergosterol synthesis in the absence of trichothecene production. RNA-seq analyses indicated that genes in 10 of 49 secondary metabolite (SM) biosynthetic gene clusters in T. arundinaceum exhibited increased expression and five exhibited reduced expression in a tri6 deletion mutant (Δtri6). Despite the metabolic and transcriptional changes, Δtri6 mutants were not reduced in their ability to inhibit growth of fungal plant pathogens. Our results indicate that T. arundinaceum TRI6 regulates expression of both tri and mevalonate pathway genes. It remains to be determined whether the effects of tri6 deletion on expression of other SM clusters resulted because TRI6 can bind to promoter regions of cluster genes or because trichothecene production affects other SM pathways.


Assuntos
Trichoderma/genética , Tricotecenos/genética , Sequência de Bases/genética , Ergosterol/metabolismo , Fusarium/genética , Regulação Fúngica da Expressão Gênica , Metabolismo Secundário/genética , Deleção de Sequência/genética , Transcriptoma/genética
9.
Org Biomol Chem ; 16(16): 2955-2965, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29623313

RESUMO

The fungus Trichoderma arundinaceum (Ta37) has a significant biocontrol application which has been related to the production of the trichothecene, harzianum A (2). Previous studies with a strain of T. arundinaceum which was blocked for the production of 2, revealed the existence of a chemical cross-regulation between the biocontrol fungus and its target organism. A study of the secondary metabolome of a single culture of a mutant of T. arundinaceum TaΔTri4 which produces trichothecene biosynthetic intermediates, has now been carried out. The production of secondary metabolites in a co-culture with the phytopathogen, Botrytis cinerea, was then analyzed. The mutant produced a larger quantity of the aspinolides B (6) and C (7) and other derivatives when compared to the wild type Ta37. Ten new metabolites were isolated: three aspinolides 12-14, the γ-lactones 15 and 16, two hemi-ketals 17 and 18 and three aspinolide degradation products, 19, 21 and 22. In the confrontation cultures involving the TaΔTri4 and the B. cinerea B05.10 strains, there was a higher production of the aspinolides B and C by the TaΔTri4 mutant while the production of the botryanes and botcinins by B. cinerea was reduced in the area of interaction between the cultures. These results shed light on the chemical cross-talk and ecological interactions between these fungi.


Assuntos
Trichoderma/genética , Trichoderma/metabolismo , Tricotecenos/metabolismo , Botrytis/metabolismo , Técnicas de Cocultura , Genes Fúngicos , Metaboloma , Metabolismo Secundário , Deleção de Sequência
10.
Environ Microbiol ; 18(11): 3991-4004, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27312485

RESUMO

Trichoderma arundinaceum (Ta37) and Botrytis cinerea (B05.10) produce the sesquiterpenoids harzianum A (HA) and botrydial (BOT), respectively. TaΔTri5, an HA non-producer mutant, produces high levels of the polyketide compounds aspinolides (Asp) B and C. We analyzed the role of HA and Asp in the B. cinerea-T. arundinaceum interaction, including changes in BOT production as well as transcriptomic changes of BcBOT genes involved in BOT biosynthesis, and also of genes associated with virulence and ergosterol biosynthesis. We found that exogenously added HA up-regulated the expression of the BcBOT and all the virulence genes analyzed when B. cinerea was grown alone. However, a decrease in the amount of BOT and a down-regulation of BcBOT gene expression was observed in the interaction zone of B05.10-Ta37 dual cultures, compared to TaΔTri5. Thus, the confrontation with T. arundinaceum results in an up-regulation of most of the B. cinerea genes involved in virulence yet the presence of T. arundinaceum secondary metabolites, HA and AspC, act separately and together to down-regulate the B. cinerea genes analyzed. The present work emphasizes the existence of a chemical cross-regulation between B. cinerea and T. arundinaceum and contributes to understanding how a biocontrol fungus and its prey interact with each other.


Assuntos
Aldeídos/metabolismo , Botrytis/crescimento & desenvolvimento , Botrytis/genética , Compostos Bicíclicos com Pontes/metabolismo , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Trichoderma/metabolismo , Tricotecenos/metabolismo , Botrytis/metabolismo , Botrytis/patogenicidade , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Trichoderma/química , Trichoderma/genética , Virulência
11.
Environ Microbiol ; 17(8): 2628-46, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24813508

RESUMO

Trichothecenes are phytotoxic sesquiterpenic mycotoxins that can act as virulence factors in plant diseases. Harzianum A (HA) is a non-phytotoxic trichothecene produced by Trichoderma arundinaceum. The first step in HA biosynthesis is the conversion of farnesyl diphosphate to trichodiene (TD), a volatile organic compound (VOC), catalysed by a sesquiterpene synthase encoded by the tri5 gene. Expression of tri5 in the biocontrol strain Trichoderma harzianum CECT 2413 resulted in production of TD in parallel with a reduction of ergosterol biosynthesis and an unexpected increase in the level of squalene. Transformants expressing tri5 displayed low chitinase activity and induced expression of Botrytis cinerea BOT genes, although their total antagonistic potential against phytopathogenic fungi was not reduced. VOCs released by the tri5-transformant induced expression of tomato defence genes related to salicylic acid (SA), and TD itself strongly induced the expression of SA-responsive genes and reduced the development of lateral roots. Together, these results suggest that TD acts as a signalling VOC in the interactions of Trichoderma with plants and other microorganisms by modulating the perception of this fungus to a given environment. Moreover, the TD ability to induce systemic defences indicates that complex trichothecene structures may not be necessary for inducing such responses.


Assuntos
Antibiose , Botrytis/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Trichoderma/metabolismo , Tricotecenos/metabolismo , Botrytis/genética , Botrytis/patogenicidade , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Ergosterol/metabolismo , Solanum lycopersicum/microbiologia , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Trichoderma/genética , Compostos Orgânicos Voláteis/metabolismo
12.
Environ Microbiol ; 17(4): 1103-18, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24889745

RESUMO

Harzianum A (HA), a trichothecene produced by Trichoderma arundinaceum, has recently been described to have antagonistic activity against fungal plant pathogens and to induce plant defence genes. In the present work, we have shown that a tri5 gene-disrupted mutant that lacks HA production overproduces two polyketides, aspinolides B and C, which were not detected in the wild-type strain. Furthermore, four new aspinolides (D-G) were characterized. These compounds confirm that a terpene-polyketide cross-pathway exists in T. arundinaceum, and they may be responsible for the antifungal activity and the plant sensitization effect observed with the tri5-disrupted mutant. In addition, the molecular changes involving virulence factors in the phytopathogenic fungus Botrytis cinerea 98 (Bc98) during interaction with T. arundinaceum were investigated. The expression of genes involved in the production of botrydial by Bc98 was relatively repressed by HA, whereas other virulence genes of this pathogen were induced by the presence of T. arundinaceum, for example atrB and pg1 which encode for an ABC transporter and endopolygalacturonase 1 respectively. In addition, the interaction with Bc98 significantly repressed the production of HA by T. arundinaceum, indicating that a bidirectional transcriptional regulation is established between these two antagonistic fungi.


Assuntos
Antibiose/fisiologia , Botrytis/metabolismo , Lactonas/metabolismo , Plantas/microbiologia , Trichoderma/metabolismo , Tricotecenos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Aldeídos/metabolismo , Antibiose/genética , Antifúngicos/metabolismo , Botrytis/genética , Botrytis/patogenicidade , Compostos Bicíclicos com Pontes/metabolismo , Doenças das Plantas/microbiologia , Plantas/genética , Poligalacturonase/genética , Trichoderma/genética , Trichoderma/patogenicidade , Tricotecenos/biossíntese
13.
Front Plant Sci ; 15: 1388841, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835860

RESUMO

Trichoderma strains used in vineyards for the control of grapevine trunk diseases (GTDs) present a promising alternative to chemical products. Therefore, the isolation and characterization of new indigenous Trichoderma strains for these purposes is a valuable strategy to favor the adaptation of these strains to the environment, thus improving their efficacy in the field. In this research, a new Trichoderma species, Trichoderma carraovejensis, isolated from vineyards in Ribera de Duero (Spain) area, has been identified and phylogenetically analyzed using 20 housekeeping genes isolated from the genome of 24 Trichoderma species. A morphological description and comparison of the new species has also been carried out. In order to corroborate the potential of T. carraovejensis as a biological control agent (BCA), confrontation tests against pathogenic fungi, causing various GTDs, have been performed in the laboratory. The compatibility of T. carraovejensis with different pesticides and biostimulants has also been assessed. This new Trichoderma species demonstrates the ability to control pathogens such as Diplodia seriata, as well as high compatibility with powdered sulfur-based pesticides. In conclusion, the autochthonous species T. carraovejensis can be an effective alternative to complement the currently used strategies for the control of wood diseases in its region of origin.

14.
Plants (Basel) ; 12(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36840235

RESUMO

Native strains of Trichoderma in vineyard soil represent an opportunity for reducing the incidence of grapevine trunk diseases (GTDs) in vineyards. Moreover, its relationship with the environment (physicochemical soil characteristics and farming management practices) remains unclear. In the current study, a survey was carried out on farming management used by viticulturists, and soil samples were studied to analyze their physicochemical properties and to isolate Trichoderma strains. Later, statistical analyses were performed to identify possible correlations between Trichoderma populations, soil management and soil characteristics. In addition, in vitro tests, including antibiosis and mycoparasitism, were performed to select those Trichoderma strains able to antagonize Phaeoacremonium minimum. In this study a positive correlation was found between the iron content and pH in the soil, and a lower pH increases Trichoderma populations in soils. Vineyard management also affects Trichoderma populations in the soil, negatively in the case of fertilization and tillage and positively in the case of herbicide spraying. Two Trichoderma native strains were selected as potential biocontrol agents (Trichoderma gamsii T065 and Trichoderma harzianum T087) using antibiosis and mycoparasitism as mechanisms of action. These results led to the conclusion that native Trichoderma strains hold great potential as biological control agents and as producers of secondary metabolites.

15.
Front Plant Sci ; 13: 1005906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452093

RESUMO

The trichothecene toxin-producing fungus Trichoderma arundinaceum has potential as a biological control agent. However, most biocontrol studies have focused only on one strain, IBT 40837. In the current study, three Trichoderma isolates recovered from bean-field soils produced the trichothecene harzianum A (HA) and trichodermol, the latter being an intermediate in the HA biosynthesis. Based on phylogenetic analysis, the three isolates were assigned to the species T. arundinaceum. Their genome sequences had a high degree of similarity to the reference IBT 40837 strain, in terms of total genome size, number of predicted genes, and diversity of putative secondary metabolite biosynthetic gene clusters. HA production by these bean-field isolates conferred significant in vitro antifungal activity against Rhizoctonia solani and Sclerotinia sclerotiorum, which are some of the most important bean pathogens. Furthermore, the bean-field isolates stimulated germination of bean seeds and subsequent growth of above ground parts of the bean plant. Transcriptomic analysis of bean plants inoculated with these T. arundinaceum bean-field soil isolates indicated that HA production significantly affected expression of plant defense-related genes; this effect was particularly significant in the expression of chitinase-encoding genes. Together, these results indicate that Trichoderma species producing non-phytotoxic trichothecenes can induce defenses in plants without negatively affecting germination and development.

16.
J Fungi (Basel) ; 8(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36547599

RESUMO

Farnesol is an isoprenoid intermediate in the mevalonate (MVA) pathway and is produced by the dephosphorylation of farnesyl diphosphate. Farnesol plays a central role in cell growth and differentiation, controls production of ubiquinone and ergosterol, and participates in the regulation of filamentation and biofilm formation. Despite these important functions, studies of farnesol in filamentous fungi are limited, and information on its effects on antifungal and/or biocontrol activity is scarce. In the present article, we identified the Trichoderma harzianum gene dpp1, encoding a diacylglycerol pyrophosphatase that catalyzes production of farnesol from farnesol diphosphate. We analyzed the function of dpp1 to address the importance of farnesol in Trichoderma physiology and ecology. Overexpression of dpp1 in T. harzianum caused an expected increase in farnesol production as well as a marked change in squalene and ergosterol levels, but overexpression did not affect antifungal activity. In interaction with plants, a dpp1-overexpressing transformant acted as a sensitizing agent in that it up-regulated expression of plant defense salicylate-related genes in the presence of a fungal plant pathogen. In addition, toxicity of farnesol on Trichoderma and plants was examined. Finally, a phylogenetic study of dpp1 was performed to understand its evolutionary history as a primary metabolite gene. This article represents a step forward in the acquisition of knowledge on the role of farnesol in fungal physiology and in fungus-environment interactions.

17.
Front Microbiol ; 12: 791641, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925301

RESUMO

Trichothecenes are terpenoid toxins produced by species in 10 fungal genera, including species of Trichoderma. The trichothecene biosynthetic gene (tri) cluster typically includes the tri5 gene, which encodes a terpene synthase that catalyzes formation of trichodiene, the parent compound of all trichothecenes. The two Trichoderma species, Trichoderma arundinaceum and T. brevicompactum, that have been examined are unique in that tri5 is located outside the tri cluster in a genomic region that does not include other known tri genes. In the current study, analysis of 35 species representing a wide range of the phylogenetic diversity of Trichoderma revealed that 22 species had tri5, but only 13 species had both tri5 and the tri cluster. tri5 was not located in the cluster in any species. Using complementation analysis of a T. arundinaceum tri5 deletion mutant, we demonstrated that some tri5 homologs from species that lack a tri cluster are functional, but others are not. Phylogenetic analyses suggest that Trichoderma tri5 was under positive selection following its divergence from homologs in other fungi but before Trichoderma species began diverging from one another. We propose two models to explain these diverse observations. One model proposes that the location of tri5 outside the tri cluster resulted from loss of tri5 from the cluster in an ancestral species followed by reacquisition via horizontal transfer. The other model proposes that in species that have a functional tri5 but lack the tri cluster, trichodiene production provides a competitive advantage.

18.
Curr Genet ; 56(1): 63-73, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19998038

RESUMO

The evolutionarily conserved Dim1 proteins belong to the TRX fold superfamily. An EST showing high identity values with genes coding for Dim1 proteins was selected from an EST library collection of Trichoderma virens T59. Here, we report the cloning, characterization, and functional analysis of a T. virens T59 TvDim1 gene. The TvDim1 gene, with a sequence size of 614 bp, was PCR-amplified and found to contain three introns. The TvDim1 gene was present as a single copy in the T. virens genome and was also present in another five Trichoderma strains investigated. Increased levels of expression and redox-activity were detected when the fungus was grown in the presence of H(2)O(2). The overexpression and silencing of TvDim1 in T. harzianum T34 gave rise to transformants, with higher and lower growth, redox-activity, and quantities of biomass, respectively, than the wild-type strain after culture under oxidative stress.


Assuntos
Proteínas Fúngicas/genética , Estresse Oxidativo , Trichoderma/genética , Biomassa , Proteínas Fúngicas/fisiologia , Genes Fúngicos , Peróxido de Hidrogênio , Oxirredução , Trichoderma/metabolismo
19.
Front Plant Sci ; 11: 1170, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849725

RESUMO

Trichoderma strains used in biological control products usually exhibit high efficiency in the control of plant diseases. However, their behavior under field conditions is difficult to predict. In addition, the potential of indigenous strains has been poorly assayed as well as their possible behavior as endophytes. Hence, niche colonization is a key feature for an effective protection. In this study, we aimed to: (i) explore the possibility of using a new Trichoderma strain isolated from vine to control pathogens, (ii) study the in planta interaction with the pathogen Phaeoacremonium minimum W. Gams, Crous, M.J. Wingf. & L. Mugnai (formerly Phaeoacremonium aleophilum), a pioneer fungus involved in Grapevine Trunk Diseases (GTDs) such as esca. For this purpose, fluorescently tagged Trichoderma sp. T154 and a P. minimum strain were used for scanning electron microscopy and confocal scanning laser microscopy analyses. Data showed that the Trichoderma strain is able to colonize plants up to 12 weeks post inoculation and is located in xylem, fibers, as well as in parenchymatic tissues inside the wood. The beneficial fungus reduced colonization of the esca-related pathogen colonizing the same niches. The main observed mechanism involved in biocontrol of Trichoderma against the esca pathogen was spore adhesion, niche exclusion and only few typical hypha coiling was found between Trichoderma and the pathogen. These results suggest that the Trichoderma strain has potential for reducing the colonization of Phaeoacremonium minimum and thus, an inoculation of this biological control agent can protect the plant by limiting the development of GTD, and the strain can behave as an endophyte.

20.
Mol Plant Microbe Interact ; 22(8): 1021-31, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19589077

RESUMO

Considering the complexity of the in vivo interactions established by a mycoparasitic biocontrol agent at the plant rhizosphere, proteomic, genomic, and transcriptomic approaches were used to study a novel Trichoderma gene coding for a plant cell wall (PCW)-degrading enzyme. A proteome analysis, using a three-component (Trichoderma spp.-tomato plantlets-pathogen) system, allowed us to identify a differentially expressed Trichoderma harzianum endopolygalacturonase (endoPG). Spot 0303 remarkably increased only in the presence of the soilborne pathogens Rhizoctonia solani and Pythium ultimum, and corresponded to an expressed sequence tag from a T. harzianum T34 cDNA library that was constructed in the presence of PCW polymers and used to isolate the Thpg1 gene. Compared with the wild-type strain, Thpg1-silenced transformants showed lower PG activity, less growth on pectin medium, and reduced capability to colonize tomato roots. These results were combined with microarray comparative data from the transcriptome of Arabidopsis plants inoculated with the wild type or a Thpg1-silenced transformant (ePG5). The endoPG-encoding gene was found to be required for active root colonization and plant defense induction by T. harzianum T34. In vivo assays showed that Botrytis cinerea leaf necrotic lesions were slightly smaller in plants colonized by ePG5, although no statistically significant differences were observed.


Assuntos
Proteínas Fúngicas/fisiologia , Poligalacturonase/fisiologia , Solanum lycopersicum/microbiologia , Trichoderma/enzimologia , Arabidopsis/genética , Arabidopsis/microbiologia , Clonagem Molecular , Etiquetas de Sequências Expressas , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Biblioteca Gênica , Inativação Gênica , Genômica , Dados de Sequência Molecular , Controle Biológico de Vetores , Filogenia , Poligalacturonase/genética , Proteômica , Trichoderma/genética , Trichoderma/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA