Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(7)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38233216

RESUMO

While functional brain imaging studies in humans suggest that chronic cocaine use alters functional connectivity (FC) within and between key large-scale brain networks, including the default mode network (DMN), the salience network (SN), and the central executive network (CEN), cross-sectional studies in humans are challenging to obtain brain FC prior to cocaine use. Such information is critical to reveal the relationship between individual's brain FC and the subsequent development of cocaine dependence and brain changes during abstinence. Here, we performed a longitudinal study examining functional magnetic resonance imaging (fMRI) data in male rats (n = 7), acquired before cocaine self-administration (baseline), on 1 d of abstinence following 10 d of cocaine self-administration, and again after 30 d of experimenter-imposed abstinence. Using repeated-measures analysis of variance (ANOVA) with network-based statistics (NBS), significant connectivity changes were found between anterior insular cortex (AI) of the SN, retrosplenial cortex (RSC) of the DMN, somatosensory cortex, and caudate-putamen (CPu), with AI-RSC FC showing the most robust changes between baseline and 1 d of abstinence. Additionally, the level of escalated cocaine intake is associated with AI-RSC and AI-CPu FC changes between 1 d and 30 d of abstinence; further, the subjects' AI-RSC FC prior to cocaine intake is a significant moderator for the AI-RSC changes during abstinence. These results provide novel insights into the roles of AI-RSC FC before and after cocaine intake and suggest this circuit to be a potential target to modulate large-scale network and associated behavioral changes in cocaine use disorders.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Humanos , Masculino , Animais , Ratos , Giro do Cíngulo , Mapeamento Encefálico/métodos , Córtex Insular , Estudos Longitudinais , Estudos Transversais , Encéfalo , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral/diagnóstico por imagem , Rede Nervosa
2.
J Neurosci ; 43(4): 647-655, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36639895

RESUMO

Distress tolerance (DT) is defined as the ability to persist in challenging goal-directed behavior in the face of stress, and individuals with low DT exhibit heightened drug-seeking behavior. However, no preclinical studies have examined the neurobiology underlying this phenomenon. To assess this, in vivo electrophysiology was used in Long Evans male and female rats during a DT task to record neural activity in the prelimbic cortex (PrL), a brain region implicated in drug-seeking. Rats were first assessed for DT, defined as the amount of time elapsed before rats quit seeking reward in an increasingly difficult operant task. Subsequently, rats underwent 2 weeks of self-administration for either water/saline or cocaine for 6 h/day. Animals then began a 1 month period of experimenter-imposed abstinence to induce heightened drug-seeking behavior. On day 28 of abstinence, DT and neural activity were reassessed; and on day 30, cocaine-seeking behavior was examined under extinction. Males had significantly higher DT than females and exhibited significantly more phasic PrL activity during the DT task. Furthermore, in male rats with a history of cocaine, PrL activity shifted to track DT; and this change in activity significantly correlated with the change in DT. Additionally, male (but not female) rats with low DT after 28 d of abstinence had significantly heightened drug-seeking behavior. Finally, PrL activity during the DT task predicted cocaine-seeking behavior. Collectively, these data demonstrate an important role for the PrL in DT in males, and link this neural activity and behavior to drug-seeking, particularly in males.SIGNIFICANCE STATEMENT Distress tolerance (DT) is defined as the ability to persist in challenging goal-directed behavior in the face of stress, and individuals with low DT exhibit heightened drug-seeking. Here, we investigated the role of the prelimbic cortex (PrL) in DT and its relationship to cocaine-seeking in male and female rats. We found that males had significantly higher DT than females and exhibited significantly more PrL activity during the DT task. Furthermore, male (but not female) rats with low DT after 28 d of abstinence had significantly heightened drug-seeking behavior. Finally, PrL activity during the DT task predicted cocaine-seeking. These data demonstrate an important role for the PrL in DT and link this neural activity and behavior to drug-seeking in males.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Feminino , Ratos , Masculino , Animais , Cocaína/farmacologia , Ratos Sprague-Dawley , Ratos Long-Evans , Córtex Cerebral , Comportamento de Procura de Droga/fisiologia , Autoadministração , Córtex Pré-Frontal/fisiologia , Extinção Psicológica
3.
J Neurosci ; 43(47): 8032-8042, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37816597

RESUMO

Hedonic processing is critical for guiding appropriate behavior, and the infralimbic cortex (IL) is a key neural substrate associated with this function in rodents and humans. We used deep brain in vivo calcium imaging and taste reactivity in freely behaving male and female Sprague Dawley rats to examine whether the infralimbic cortex is involved in encoding innate versus conditioned hedonic states. In experiment 1, we examined the IL neuronal ensemble responsiveness to intraoral innately rewarding (sucrose) versus aversive (quinine) tastants. Most IL neurons responded to either sucrose only or both sucrose and quinine, with fewer neurons selectively processing quinine. Among neurons that responded to both stimuli, some appear to encode hedonic processing. In experiment 2, we examined how IL neurons process devalued sucrose using conditioned taste aversion (CTA). We found that neurons that responded exclusively to sucrose were disengaged while additional quinine-exclusive neurons were recruited. Moreover, tastant-specific neurons that did not change their neuronal activity after CTA appeared to encode objective hedonic value. However, other neuronal ensembles responded to both tastants and appear to encode distinct aspects of hedonic processing. Specifically, some neurons responded differently to quinine and sucrose and shifted from appetitive-like to aversive-like activity after CTA, thus encoding the subjective hedonic value of the stimulus. Conversely, neurons that responded similarly to both tastants were heightened after CTA. Our findings show dynamic shifts in IL ensembles encoding devalued sucrose and support a role for parallel processing of objective and subjective hedonic value.SIGNIFICANCE STATEMENT Disrupted affective processing contributes to psychiatric disorders including depression, substance use disorder, and schizophrenia. We assessed how the infralimbic cortex, a key neural substrate involved in affect generation and affect regulation, processes innate and learned hedonic states using deep brain in vivo calcium imaging in freely behaving rats. We report that unique infralimbic cortex ensembles encode stimulus subjective and objective hedonic value. Further, our findings support similarities and differences in innate versus learned negative affective states. This study provides insight into the neural mechanisms underlying affect generation and helps to establish a foundation for the development of novel treatment strategies to reduce negative affective states that arise in many psychiatric disorders.


Assuntos
Quinina , Paladar , Humanos , Ratos , Masculino , Feminino , Animais , Paladar/fisiologia , Ratos Sprague-Dawley , Quinina/farmacologia , Cálcio , Sacarose , Neurônios/fisiologia
4.
J Neurosci ; 40(36): 6888-6895, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32727819

RESUMO

Hedonic processing plays an integral role in directing appropriate behavior, but disrupted hedonic processing is associated with psychiatric disorders such as depression. The infralimbic cortex (IL) is a key structure in affective processing in rodents and activation of its human homolog, the ventromedial prefrontal cortex, has been implicated in suppressing aversive states. Here, we tested whether optogenetic activation of glutamatergic projections from the IL to the nucleus accumbens shell (NAcSh) suppresses the aversive impact of sucrose devalued using the conditioned taste aversion paradigm in males and female rats. In naive rats, no significant differences in appetitive or aversive taste reactivity (TR) to sucrose was observed indicating that initial sucrose palatability was equivalent across sex. However, we found that optical activation of the IL-NAcSh pathway during intraoral infusion of devalued sucrose inhibited aversive TR in male but not female rats. Interestingly, when allowed to freely ingest water and sucrose in a two-bottle test both males and females with a history of IL-NAcSh stimulation exhibited greater preference for sucrose. Optical pathway activation failed to alter TR to innately bitter quinine in either sex. Finally, both sexes lever pressed to self-stimulate the IL-NAcSh pathway. These results indicate that the IL-NAcSh pathway plays an important role in suppressing learned aversive states selectively in males but spares hedonic processing of innately aversive tastants. Further, pathway activation is reinforcing in both sexes, indicating that suppression of conditioned aversive TR can be dissociable from the effects of unconditioned rewarding properties of IL-NAcSh pathway activation.SIGNIFICANCE STATEMENT Negative emotional states contribute to psychiatric disorders including depression and substance use disorders. In this study, we examined whether brain circuitry previously implicated in suppressing negative emotional states in humans can inhibit learned aversion in male and female rats. We found that optical activation of the infralimbic to nucleus accumbens shell pathway attenuates learned aversive responses in male but not female rats, indicating an important sex difference in the function of this brain pathway. Furthermore, we found that pathway stimulation was reinforcing in both sexes. Collectively, these findings support the role of the infralimbic cortex and its projection to the nucleus accumbens shell in suppressing learned negative emotional states and highlight an important sex-specific function of this pathway.


Assuntos
Condicionamento Clássico , Sistema Límbico/fisiologia , Núcleo Accumbens/fisiologia , Percepção Gustatória , Animais , Agentes Aversivos , Feminino , Masculino , Vias Neurais/fisiologia , Quinina , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
5.
J Neurosci ; 39(16): 3108-3118, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30755490

RESUMO

In delay discounting, individuals discount the value of a reward based on the delay to its receipt. The prelimbic cortex (PrL) is heavily interconnected with several brain regions implicated in delay discounting, but the specific contributions of the PrL to delay discounting are unknown. Here, we used multineuron electrophysiological recording methods in Long-Evans male (n = 10) and female (n = 9) rats to characterize the firing dynamics of PrL neurons during discrete cue and lever press events in a delay discounting task. Rats' initial preference for the large reward decreased as delays for that outcome increased across blocks, reflecting classic discounting behavior. Electrophysiological recordings revealed that subgroups of neurons exhibited phasic responses to cue presentations and lever presses. These phasic neurons were found to respond to either large/delay, small/immediate, or both trial types and the percentage of these neurons shifted across blocks as the expected value of the reward changed. Critically, this shift was only seen during trials in which animals could choose their preferred option (free choice trials) and not during trials where animals could choose only one option (forced choice trials). Further, this shift was dependent on rats' inherent impulsivity because high impulsive rats demonstrated a greater percentage of small/immediate-responsive neurons as the task progressed. Collectively, these findings suggest a unique role for the PrL in encoding reward value during delay discounting that is influenced by individual differences in impulsivity.SIGNIFICANCE STATEMENT In delay discounting, individuals discount the value of a reward based on the delay to its receipt. Here, we used electrophysiology to investigate the role of the prelimbic cortex (PrL) in this process. We found that subsets of neurons shifted activity as a function of the changing expected delay and reward magnitude, but this shift was only evident during trials in which animals could choose their preferred option. Further, this dynamic neural activity depended on rats' inherent impulsivity, with impulsive rats exhibiting a stronger neural shift toward the immediate reward as the task progressed. These findings suggest a role for the PrL in encoding reward value during delay discounting that is influenced by goal-directed context and individual differences in impulsivity.


Assuntos
Córtex Cerebral/fisiologia , Comportamento de Escolha/fisiologia , Desvalorização pelo Atraso/fisiologia , Comportamento Impulsivo/fisiologia , Neurônios/fisiologia , Recompensa , Animais , Comportamento Animal/fisiologia , Condicionamento Operante/fisiologia , Feminino , Masculino , Ratos , Ratos Long-Evans
6.
Eur J Neurosci ; 51(7): 1526-1538, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31863510

RESUMO

Effective decision-making depends on an animal's ability to predict and select the outcome of greatest value, and the nucleus accumbens (NAc) and its dopaminergic input play a key role in this process. We previously reported that rapid dopamine release in the NAc shell preferentially tracks the "preferred" (i.e., large reward) option during cues that predict the ability to respond for rewards of different sizes, as well as during reward delivery itself. The present study assessed whether shell dopamine release at these discrete times selectively mediated choice behavior for rewards of different magnitudes using optogenetics. Here, using Long Evans TH:Cre± rats we employed selective optogenetic stimulation of dopamine terminals in the NAc shell during either reward-predictive cues (experiment 1) or reward delivery (experiment 2) in a magnitude-based decision-making task. We found that in TH:Cre± rats, but not littermate controls, optical stimulation during low-magnitude reward delivery during forced choice trials was sufficient to bias preference for this option when given a choice. In contrast, optical stimulation of shell dopamine terminals during low-magnitude reward-predictive cues in forced choice trials did not shift free choice behavior in TH:Cre± rats or controls. The findings indicate that preferential dopamine signaling in the NAc shell during reward outcome (delivery), but not reward-predictive cues are sufficient to influence choice behavior in our task supporting a causal role of dopamine in the NAc shell in reward outcome value, but not value-based predictive strategies.


Assuntos
Dopamina , Núcleo Accumbens , Animais , Tomada de Decisões , Dopamina/fisiologia , Ratos , Ratos Long-Evans , Recompensa
7.
J Neurosci ; 38(39): 8463-8472, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30126972

RESUMO

In substance use disorders, negative affect associated with drug withdrawal can elicit strong drug craving and promote relapse. One brain region implicated in those processes is the rostral agranular insular cortex (RAIC), although precisely how this region encodes negative affect associated with drug seeking is unknown. Here, a preclinical model was used where RAIC activity was examined in male Sprague Dawley rats during intraoral infusions of a sweet (saccharin) paired with impending but delayed access to cocaine self-administration, and for comparative purposes, during the sweet predicting saline self-administration or injection of lithium chloride (LiCl), or during intraoral infusions of a bitter taste (quinine). Consistent with previous work, cocaine-paired saccharin, LiCl-paired saccharin, and quinine all elicited aversive taste reactivity. However, the aversive taste reactivity elicited by the cocaine-paired tastant was qualitatively different from that evoked by the other two agents. Furthermore, differences in taste reactivity were reflected in RAIC cell firing, where distinct shifts in neural signaling were observed specifically after cocaine but not LiCl conditioning. Notably, low motivation for cocaine (indicated by low loading and slower latencies to lever press) was correlated with this shift in RAIC signaling, but aversive (gaping) responses were not. Collectively, these findings indicate that cocaine-paired tastants elicit unique aspects of aversive behaviors that differ from traditional conditioned taste aversion (LiCl) or quinine and that the RAIC plays a role in modulating drug-seeking behaviors driven by drug-induced dysphoria (craving), but not negative affect per se.SIGNIFICANCE STATEMENT In substance use disorders, negative affect associated with drug cues can elicit craving and promote relapse; however, the underlying neurocircuitry of this phenomenon is unknown. Here, we investigated the role of the rostral agranular insula cortex (RAIC) in these processes using a preclinical model wherein intraoral delivery of a sweet is paired with delayed access to cocaine self-administration. The taste comes to elicit negative affect that predicts heightened drug seeking. Here, we found that a population of RAIC neurons became inhibited during presentation of the cocaine-paired tastant (when negative affect is high) and that this inhibitory neural profile predicted lower drug seeking. These findings suggest that the RAIC may function to oppose cue-induced cocaine craving and help reduce motivation for the drug.


Assuntos
Afeto/fisiologia , Córtex Cerebral/fisiologia , Cocaína/administração & dosagem , Comportamento de Procura de Droga/fisiologia , Neurônios/fisiologia , Recompensa , Afeto/efeitos dos fármacos , Animais , Córtex Cerebral/efeitos dos fármacos , Condicionamento Operante , Comportamento de Procura de Droga/efeitos dos fármacos , Cloreto de Lítio/administração & dosagem , Masculino , Neurônios/efeitos dos fármacos , Quinina/administração & dosagem , Ratos Sprague-Dawley , Sacarina/administração & dosagem , Paladar/efeitos dos fármacos , Paladar/fisiologia , Percepção Gustatória/efeitos dos fármacos , Percepção Gustatória/fisiologia
8.
Addict Biol ; 24(4): 631-640, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29717793

RESUMO

Negative reinforcement models postulate that addicts use drugs to alleviate negative affective states (e.g. dysphoria) associated with withdrawal. In a pre-clinical model, rats exhibit negative affect to a normally rewarding tastant when it predicts impending, but delayed cocaine, and nucleus accumbens (NAc) neurons dynamically track this state. Here, we examined the effects of short versus prolonged experimenter-imposed cocaine abstinence on negative affect, cocaine seeking and self-administration. Rats were given 14 saccharin-cocaine sessions; NAc activity and affective responses to the taste (i.e. taste reactivity) were measured during sessions 1 and 14. Next, following 1 or 30 days of abstinence, taste reactivity and cell firing were recorded in a three-phase test session: (1) intraoral saccharin infusions, (2) extinction and (3) cocaine self-administration. Results showed that 30 days of abstinence led to a significant enhancement of aversive responses to the cocaine-paired tastant, accompanied by a dramatic decline in NAc phasic activity during tastant infusion. While extinction behavior did not differ across groups, NAc phasic firing reemerged during drug seeking. Further, when drug was again readily available, greater aversion to the drug-paired tastant before and after abstinence was associated with increased self-administration following prolonged (30-day) abstinence in rats classified as high (not low) aversive. Collectively, these findings show that drug-induced dysphoria is enhanced following prolonged cocaine abstinence and that NAc neural signaling is dynamic, dampening when negative affect is at its highest (phase 1), but transitioning back 'online' during subsequent drug seeking and taking (phases 2 and 3).


Assuntos
Afeto , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Comportamento de Procura de Droga , Extinção Psicológica , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Animais , Transtornos Relacionados ao Uso de Cocaína , Fenômenos Eletrofisiológicos , Masculino , Ratos , Sacarina/administração & dosagem , Autoadministração , Síndrome de Abstinência a Substâncias , Edulcorantes/administração & dosagem
9.
Addict Biol ; 23(1): 130-141, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28074543

RESUMO

Distress tolerance (DT), defined as the ability to persist in goal-directed behavior while experiencing psychological distress, is associated with greater frequency of substance use and poor treatment outcomes. To examine a potential causal role substance use may play in DT, we developed a rodent model of DT in which rats had to press a lever within a continuously decreasing time window for reward while receiving negative feedback on failure trials. DT was defined as the time rats continued to seek reward before quitting the task. We assessed the relationship of DT with cocaine seeking/taking by measuring DT before cocaine self-administration (SA), and after 1 week and 1 month of drug abstinence. We found that DT prior to cocaine SA did not predict cocaine seeking/taking, yet DT measured after 1 month abstinence significantly predicted subsequent high levels of early session cocaine taking. Additionally, high DT measured after abstinence protected against high cocaine seeking, but this protective effect was blocked in rats with high impulsivity. Finally, while a decrease in 1 month-abstinent DT was observed following SA across treatment conditions, among cocaine-exposed rats, greater cocaine SA correlated with a steeper decrease in DT. These results show that low DT after drug abstinence is associated with heightened levels of cocaine seeking and taking behavior and that impulsivity influences this effect. Collectively, these results support the validity of our rodent DT model while extending the human literature and set the foundation for future animal studies designed to determine neural mechanisms underlying DT.


Assuntos
Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Comportamento de Procura de Droga , Estresse Psicológico/psicologia , Animais , Atenção , Condicionamento Operante , Extinção Psicológica , Comportamento Impulsivo , Masculino , Ratos , Ratos Long-Evans , Autoadministração , Análise e Desempenho de Tarefas
10.
J Neurosci ; 36(4): 1128-39, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26818502

RESUMO

Nucleus accumbens (NAc) neurons encode features of stimulus learning and action selection associated with rewards. The NAc is necessary for using information about expected outcome values to guide behavior after reinforcer devaluation. Evidence suggests that core and shell subregions may play dissociable roles in guiding motivated behavior. Here, we recorded neural activity in the NAc core and shell during training and performance of a reinforcer devaluation task. Long-Evans male rats were trained that presses on a lever under an illuminated cue light delivered a flavored sucrose reward. On subsequent test days, each rat was given free access to one of two distinctly flavored foods to consume to satiation and were then immediately tested on the lever pressing task under extinction conditions. Rats decreased pressing on the test day when the reinforcer earned during training was the sated flavor (devalued) compared with the test day when the reinforcer was not the sated flavor (nondevalued), demonstrating evidence of outcome-selective devaluation. Cue-selective encoding during training by NAc core (but not shell) neurons reliably predicted subsequent behavioral performance; that is, the greater the percentage of neurons that responded to the cue, the better the rats suppressed responding after devaluation. In contrast, NAc shell (but not core) neurons significantly decreased cue-selective encoding in the devalued condition compared with the nondevalued condition. These data reveal that NAc core and shell neurons encode information differentially about outcome-specific cues after reinforcer devaluation that are related to behavioral performance and outcome value, respectively. SIGNIFICANCE STATEMENT: Many neuropsychiatric disorders are marked by impairments in behavioral flexibility. Although the nucleus accumbens (NAc) is required for behavioral flexibility, it is not known how NAc neurons encode this information. Here, we recorded NAc neurons during a training session in which rats learned that a cue predicted a specific reward and during a test session when that reward value was changed. Although encoding in the core during training predicted the ability of rats to change behavior after the reward value was altered, the NAc shell encoded information about the change in reward value during the test session. These findings suggest differential roles of the core and shell in behavioral flexibility.


Assuntos
Sinais (Psicologia) , Neurônios/fisiologia , Núcleo Accumbens/fisiologia , Recompensa , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Condicionamento Operante/fisiologia , Masculino , Inibição Neural/fisiologia , Núcleo Accumbens/citologia , Ratos , Ratos Long-Evans
11.
J Neurosci ; 36(1): 235-50, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26740664

RESUMO

Chronic exposure to drugs of abuse is linked to long-lasting alterations in the function of limbic system structures, including the nucleus accumbens (NAc). Although cocaine acts via dopaminergic mechanisms within the NAc, less is known about whether phasic dopamine (DA) signaling in the NAc is altered in animals with cocaine self-administration experience or if these animals learn and interact normally with stimuli in their environment. Here, separate groups of rats self-administered either intravenous cocaine or water to a receptacle (controls), followed by 30 d of enforced abstinence. Next, all rats learned an appetitive Pavlovian discrimination and voltammetric recordings of real-time DA release were taken in either the NAc core or shell of cocaine and control subjects. Cocaine experience differentially impaired DA signaling in the core and shell relative to controls. Although phasic DA signals in the shell were essentially abolished for all stimuli, in the core, DA did not distinguish between cues and was abnormally biased toward reward delivery. Further, cocaine rats were unable to learn higher-order associations and even altered simple conditioned approach behaviors, displaying enhanced preoccupation with cue-associated stimuli (sign-tracking; ST) but diminished time at the food cup awaiting reward delivery (goal-tracking). Critically, whereas control DA signaling correlated with ST behaviors, cocaine experience abolished this relationship. These findings show that cocaine has persistent, differential, and pathological effects on both DA signaling and DA-dependent behaviors and suggest that psychostimulant experience may remodel the very circuits that bias organisms toward repeated relapse. SIGNIFICANCE STATEMENT: Relapsing to drug abuse despite periods of abstinence and sincere attempts to quit is one of the most pernicious facets of addiction. Unfortunately, little is known about how the dopamine (DA) system functions after periods of drug abstinence, particularly its role in behavior in nondrug situations. Here, rats learned about food-paired stimuli after prolonged abstinence from cocaine self-administration. Using voltammetry, we found that real-time DA signals in cocaine-experienced rats were strikingly altered relative to controls. Further, cocaine-experienced animals found reward-predictive stimuli abnormally salient and spent more time interacting with cues. Therefore, cocaine induces neuroplastic changes in the DA system that biases animals toward salient stimuli (including reward-associated cues), putting addicts at increasing risk to relapse as addiction increases in severity.


Assuntos
Comportamento Aditivo/induzido quimicamente , Comportamento Aditivo/fisiopatologia , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Cocaína/intoxicação , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Animais , Cocaína/administração & dosagem , Transtornos Relacionados ao Uso de Cocaína/etiologia , Condicionamento Clássico/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Recompensa , Automedicação , Transmissão Sináptica
12.
J Neurosci ; 36(22): 6011-21, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27251622

RESUMO

UNLABELLED: Dopaminergic neurons that project from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) fire in response to unpredicted rewards or to cues that predict reward delivery. Although it is well established that reward-related events elicit dopamine release in the NAc, the role of rapid dopamine signaling in modulating NAc neurons that respond to these events remains unclear. Here, we examined dopamine's actions in the NAc in the rat brain during an intracranial self-stimulation task in which a cue predicted lever availability for electrical stimulation of the VTA. To distinguish actions of dopamine at select receptors on NAc neurons during the task, we used a multimodal sensor that probes three aspects of neuronal communication simultaneously: neurotransmitter release, cell firing, and identification of dopamine receptor type. Consistent with prior studies, we first show dopamine release events in the NAc both at cue presentation and after lever press (LP). Distinct populations of NAc neurons encode these behavioral events at these same locations selectively. Using our multimodal sensor, we found that dopamine-mediated responses after the cue involve exclusively a subset of D2-like receptors (D2Rs), whereas dopamine-mediated responses proximal to the LP are mediated by both D1-like receptors (D1R) and D2Rs. These results demonstrate for the first time that dopamine-mediated responses after cues that predict reward availability are specifically linked to its actions at a subset of neurons in the NAc containing D2Rs. SIGNIFICANCE STATEMENT: Successful reward procurement typically involves the completion of a goal-directed behavior in response to appropriate environmental cues. Although numerous studies link the mesolimbic dopamine system with these processes, how dopamine's effects are mediated on the receptor level within a key neural substrate, the nucleus accumbens, remains elusive. Here, we used a unique multimodal sensor that reveals three aspects of neuronal interactions: neurotransmitter release, cell firing, and dopamine-receptor type. We identified a key role of D2-like receptor (D2R)-expressing neurons in response to a reward-predicting cue, whereas both the D2R and D1R types modulate responses of neurons proximal to the goal-directed action. This work provides novel insight into the unique role of D2R-mediated neuronal activity to reward-associated cues, a fundamental aspect of motivated behaviors.


Assuntos
Sinais (Psicologia) , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Motivação/fisiologia , Núcleo Accumbens/citologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Cocaína/administração & dosagem , Cocaína/farmacologia , Dopaminérgicos/farmacologia , Inibidores da Captação de Dopamina/administração & dosagem , Inibidores da Captação de Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Estimulação Elétrica , Objetivos , Iontoforese , Masculino , Vias Neurais/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Autoestimulação , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
13.
J Neurosci ; 35(33): 11572-82, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26290234

RESUMO

Mesolimbic dopamine (DA) is phasically released during appetitive behaviors, though there is substantive disagreement about the specific purpose of these DA signals. For example, prediction error (PE) models suggest a role of learning, while incentive salience (IS) models argue that the DA signal imbues stimuli with value and thereby stimulates motivated behavior. However, within the nucleus accumbens (NAc) patterns of DA release can strikingly differ between subregions, and as such, it is possible that these patterns differentially contribute to aspects of PE and IS. To assess this, we measured DA release in subregions of the NAc during a behavioral task that spatiotemporally separated sequential goal-directed stimuli. Electrochemical methods were used to measure subsecond NAc dopamine release in the core and shell during a well learned instrumental chain schedule in which rats were trained to press one lever (seeking; SL) to gain access to a second lever (taking; TL) linked with food delivery, and again during extinction. In the core, phasic DA release was greatest following initial SL presentation, but minimal for the subsequent TL and reward events. In contrast, phasic shell DA showed robust release at all task events. Signaling decreased between the beginning and end of sessions in the shell, but not core. During extinction, peak DA release in the core showed a graded decrease for the SL and pauses in release during omitted expected rewards, whereas shell DA release decreased predominantly during the TL. These release dynamics suggest parallel DA signals capable of supporting distinct theories of appetitive behavior. SIGNIFICANCE STATEMENT: Dopamine signaling in the brain is important for a variety of cognitive functions, such as learning and motivation. Typically, it is assumed that a single dopamine signal is sufficient to support these cognitive functions, though competing theories disagree on how dopamine contributes to reward-based behaviors. Here, we have found that real-time dopamine release within the nucleus accumbens (a primary target of midbrain dopamine neurons) strikingly varies between core and shell subregions. In the core, dopamine dynamics are consistent with learning-based theories (such as reward prediction error) whereas in the shell, dopamine is consistent with motivation-based theories (e.g., incentive salience). These findings demonstrate that dopamine plays multiple and complementary roles based on discrete circuits that help animals optimize rewarding behaviors.


Assuntos
Antecipação Psicológica/fisiologia , Apetite/fisiologia , Dopamina/metabolismo , Motivação/fisiologia , Núcleo Accumbens/fisiologia , Recompensa , Animais , Extinção Psicológica/fisiologia , Masculino , Neurotransmissores/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Anal Chem ; 87(22): 11484-91, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26477708

RESUMO

Principal component regression, a multivariate calibration technique, is an invaluable tool for the analysis of voltammetric data collected in vivo with acutely implanted microelectrodes. This method utilizes training sets to separate cyclic voltammograms into contributions from multiple electroactive species. The introduction of chronically implanted microelectrodes permits longitudinal measurements at the same electrode and brain location over multiple recordings. The reliability of these measurements depends on a consistent calibration methodology. One published approach has been the use of training sets built with data from separate electrodes and animals to evaluate neurochemical signals in multiple subjects. Alternatively, responses to unpredicted rewards have been used to generate calibration data. This study addresses these approaches using voltammetric data from three different experiments in freely moving rats obtained with acutely implanted microelectrodes. The findings demonstrate critical issues arising from the misuse of principal component regression that result in significant underestimates of concentrations and improper statistical model validation that, in turn, can lead to inaccurate data interpretation. Therefore, the calibration methodology for chronically implanted microelectrodes needs to be revisited and improved before measurements can be considered reliable.


Assuntos
Técnicas Eletroquímicas , Análise de Componente Principal , Animais , Comportamento Animal , Calibragem , Eletrodos , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
15.
Behav Pharmacol ; 26(4): 398-402, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25738759

RESUMO

In a preclinical model of natural reward devaluation by cocaine, taste cues elicit aversive taste reactivity when they predict impending but delayed cocaine self-administration. Here, we investigated this negative affective state as a function of cocaine dose. Male, Sprague-Dawley rats were given 45 brief intraoral infusions of a 0.15% saccharin solution before 2 h cocaine self-administration for 14 days. Rats were video recorded; taste reactivity and patterns of self-administration were quantified on the first and last days. On day 14, a significant decrease in appetitive taste reactivity and increase in aversive taste reactivity was observed (compared with day 1) that did not vary as a function of cocaine dose. In contrast, patterns of cocaine self-administration (i.e. the total number of lever presses and load-up behavior) varied as a function of dose across days. Further, load-up behavior was positively correlated with aversive taste reactivity (i.e. gapes) on day 14 across all doses tested. Collectively, these findings indicate that the emergence of negative affect in this preclinical model is not dependent on cocaine dose.


Assuntos
Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Recompensa , Percepção Gustatória/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Comportamento de Procura de Droga/efeitos dos fármacos , Masculino , Modelos Animais , Ratos Sprague-Dawley , Sacarina/administração & dosagem , Autoadministração , Gravação em Vídeo
16.
Eur J Neurosci ; 39(11): 1891-902, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24690012

RESUMO

Cocaine stimuli often trigger relapse of drug-taking, even following periods of prolonged abstinence. Here, electrophysiological recordings were made in rats (n = 29) to determine how neurons in the prelimbic (PrL) or infralimbic (IL) regions of the medial prefrontal cortex (mPFC) encode cocaine-associated stimuli and cocaine-seeking, and whether this processing is differentially altered after 1 month of cocaine abstinence. After self-administration training, neurons (n = 308) in the mPFC were recorded during a single test session conducted either the next day or 1 month later. Test sessions consisted of three phases during which (i) the tone-houselight stimulus previously paired with cocaine infusion during self-administration was randomly presented by the experimenter, (ii) rats responded on the lever previously associated with cocaine during extinction and (iii) the tone-houselight was presented randomly between cocaine-reinforced responding during resumption of cocaine self-administration. PrL neurons showed enhanced encoding of the cocaine stimulus and drug-seeking behavior (under extinction and self-administration) following 30 days of abstinence. In contrast, although IL neurons encoded cocaine cues and cocaine-seeking, there were no pronounced changes in IL responsiveness following 30 days of abstinence. Importantly, cue-related changes do not represent a generalised stimulus-evoked discharge as PrL and IL neurons in control animals (n = 4) exhibited negligible recruitment by the tone-houselight stimulus. The results support the view that, following abstinence, neural encoding in the PrL but not IL may play a key role in enhanced cocaine-seeking, particularly following re-exposure to cocaine-associated cues.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Cocaína/farmacologia , Sinais (Psicologia) , Comportamento de Procura de Droga , Córtex Pré-Frontal/fisiopatologia , Potenciais de Ação , Animais , Cocaína/administração & dosagem , Condicionamento Clássico , Extinção Psicológica , Generalização Psicológica , Sistema Límbico/fisiopatologia , Masculino , Neurônios/fisiologia , Especificidade de Órgãos , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Autoadministração , Fatores de Tempo
17.
Biol Psychiatry Glob Open Sci ; 4(1): 354-362, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298775

RESUMO

Background: Negative affect is prevalent in psychiatric diseases such as depression and addiction. Projections from the infralimbic cortex (IL) to the nucleus accumbens shell (NAcSh) are causally linked to learned negative affect as 20 Hz optogenetic stimulation of this circuit reduces conditioned taste aversion (CTA) in male but not female rats. However, the prior study did not provide insight into how innate versus learned negative affect are processed in these areas across sex. Methods: To address this issue, local field potential activity was simultaneously recorded in the IL and NAcSh in response to intraoral infusion of rewarding (saccharin) and aversive (quinine) tastants and following induction of a CTA in male and female Sprague Dawley rats. Results: Local field potential oscillatory activity within each brain region to saccharin varied across sex. In males, CTA increased IL resting-state power, which was correlated with the strength of the learned aversion, and reduced beta power and IL-NAcSh coherence. In females, CTA increased gamma power in the NAcSh. Similar effects were observed in males and females after CTA in theta-low gamma phase-amplitude coupling. Finally, while quinine produced similar effects in oscillatory power across sex, females showed differences in phase-amplitude coupling within the NAcSh that may be linked to aversion resistance. Conclusions: We revealed sex-specific hedonic processing in the IL and NAcSh and how oscillatory signaling is disrupted in learned negative affect, revealing translationally relevant insight into potential treatment strategies that can help to reduce the deleterious effects of learned negative affect in psychiatric illnesses.

18.
Addict Neurosci ; 72023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37396409

RESUMO

Substance use disorders (SUDs) are characterized by maladaptive signaling in the prefrontal cortex and associated regions, however precisely how these drug-induced abnormalities may be linked to drug seeking/taking behaviors is not well understood. Here, in vivo local field potential (LFP) electrophysiology was used in rats to examine the relationship between overall spontaneous (resting state) activity within the prelimbic cortex (PrL) and nucleus accumbens (NAc) core, and their functional connectivity, to cocaine taking and seeking behaviors. Adult, male Sprague-Dawley rats were trained to self-administer either intravenous cocaine (0.33 mg/inf) or water reinforcement during 6-hour daily sessions over 2 weeks; extinction sessions were completed immediately after self-administration training and following 30 days experimenter-imposed abstinence. Rest LFP recordings were completed during 3 recording periods (15 min each in a chamber different from the self-administration context) conducted (1) prior to self-administration training (rest LFP 1) (2) immediately after 2 weeks of self-administration training (rest LFP 2) and (3) following 1 month abstinence (rest LFP 3). Our findings show that resting state LFP power in the PrL recorded prior to training (Rest LFP 1) was positively correlated with total cocaine intake and escalation of cocaine seeking at the beta frequency range. Immediately after self-administration training (Rest LFP 2) power in the NAc core at gamma frequency was negatively correlated with incubation of cocaine craving. For rats trained to self-administer water, no significant correlations were observed. Together, these findings show that resting state LFP at specific timepoints in the addiction cycle can serve as unique predictors (biomarkers) of cocaine use disorders.

19.
J Neurosci ; 31(39): 13860-9, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21957248

RESUMO

The mesolimbic dopamine projection from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) is critical in mediating reward-related behaviors, but the precise role of dopamine in this process remains unknown. We completed a series of studies to examine whether coincident changes occur in NAc cell firing and rapid dopamine release during goal-directed behaviors for sucrose and if so, to determine whether the two are causally linked. We show that distinct populations of NAc neurons differentially encode sucrose-directed behaviors, and using a combined electrophysiology/electrochemistry technique, further show that it is at those locations that rapid dopamine signaling is observed. To determine causality, NAc cell firing was recorded during selective pharmacological inactivation of dopamine burst firing using the NMDA receptor antagonist, AP-5. We show that phasic dopamine selectively modulates excitatory but not inhibitory responses of NAc neurons during sucrose-seeking behavior. Thus, rapid dopamine signaling does not exert global actions in the NAc but selectively modulates discrete NAc microcircuits that ultimately influence goal-directed actions.


Assuntos
Dopamina/fisiologia , Rede Nervosa/fisiologia , Núcleo Accumbens/fisiologia , Transdução de Sinais/fisiologia , Sacarose/administração & dosagem , Animais , Comportamento Alimentar/fisiologia , Masculino , Rede Nervosa/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Recompensa , Autoadministração , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
20.
J Neurophysiol ; 107(6): 1731-7, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22190618

RESUMO

Norepinephrine (NE) is an easily oxidized neurotransmitter that is found throughout the brain. Considerable evidence suggests that it plays an important role in neurocircuitry related to fear and anxiety responses. In certain subregions of the bed nucleus of the stria terminalis (BNST), NE is found in large amounts. In this work we probed differences in electrically evoked release of NE and its regulation by the norepinephrine transporter (NET) and the α(2)-adrenergic autoreceptor (α(2)-AR) in two regions of the BNST of anesthetized rats. NE was monitored in the dorsomedial BNST (dmBNST) and ventral BNST (vBNST) by fast-scan cyclic voltammetry at carbon fiber microelectrodes. Pharmacological agents were introduced either by systemic application (intraperitoneal injection) or by local application (iontophoresis). The iontophoresis barrels were attached to a carbon fiber microelectrode to allow simultaneous detection of evoked NE release and quantitation of iontophoretic delivery. Desipramine (DMI), an inhibitor of NET, increased evoked release and slowed clearance of released NE in both regions independent of the mode of delivery. However, the effects of DMI were more robust in the vBNST than in the dmBNST. Similarly, the α(2)-AR autoreceptor inhibitor idazoxan (IDA) enhanced NE release in both regions but to a greater extent in the vBNST by both modes of delivery. Since both local application by iontophoresis and systemic application of IDA had similar effects on NE release, our results indicate that terminal autoreceptors play a predominant role in the inhibition of subsequent release.


Assuntos
Norepinefrina/metabolismo , Núcleos Septais/metabolismo , Animais , Estimulação Elétrica , Eletroquímica , Masculino , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA