Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mass Spectrom Rev ; 42(4): 1113-1128, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34747521

RESUMO

The Human Plasma Proteome has always been the most investigated compartment in proteomics-based biomarker discovery, and is considered the largest and deepest version of the human proteome, reflecting the state of the body in health and disease. Even if efforts have been always dedicated to the refinement of proteomic approaches to investigate more deeply the plasma proteome, it should not be forgotten that also highly abundant plasma proteins, like human serum albumin (HSA), often neglected in these studies, might provide fundamental physiological functions in plasma, and should be better considered. This review summarizes the important roles of HSA in the context of cardiovascular diseases (CVD), and in particular in heart failure. Notwithstanding much attention has been historically directed toward the association of HSA levels and CVD risk, the advances in the field of mass spectrometry research allow also a better characterization of the effects of oxidative modifications that could alter not only the structure but also the function of HSA.


Assuntos
Albuminas , Doenças Cardiovasculares , Insuficiência Cardíaca , Humanos , Proteoma/metabolismo , Proteômica
2.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893578

RESUMO

BACKGROUND: The viral main protease (Mpro) of SARS-CoV-2 has been recently proposed as a key target to inhibit virus replication in the host. Therefore, molecules that can bind the catalytic site of Mpro could be considered as potential drug candidates in the treatment of SARS-CoV-2 infections. Here we proposed the application of a state-of-the-art analytical platform which combines metabolomics and protein structure analysis to fish-out potential active compounds deriving from a natural matrix, i.e., a blueberry extract. METHODS: The experiments focus on finding MS covalent inhibitors of Mpro that contain in their structure a catechol/pyrogallol moiety capable of binding to the nucleophilic amino acids of the enzyme's catalytic site. RESULTS: Among the potential candidates identified, the delphinidin-3-glucoside showed the most promising results. Its antiviral activity has been confirmed in vitro on Vero E6 cells infected with SARS-CoV-2, showing a dose-dependent inhibitory effect almost comparable to the known Mpro inhibitor baicalin. The interaction of delphinidin-3-glucoside with the Mpro pocket observed was also evaluated by computational studies. CONCLUSIONS: The HRMS analytical platform described proved to be effective in identifying compounds that covalently bind Mpro and are active in the inhibition of SARS-CoV-2 replication, such as delphinidin-3-glucoside.


Assuntos
Antocianinas , Antivirais , Mirtilos Azuis (Planta) , Proteases 3C de Coronavírus , Extratos Vegetais , Inibidores de Proteases , SARS-CoV-2 , Mirtilos Azuis (Planta)/química , Antocianinas/farmacologia , Antocianinas/química , Antivirais/farmacologia , Antivirais/química , Chlorocebus aethiops , Células Vero , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19 , Humanos , Simulação de Acoplamento Molecular , COVID-19/virologia , Glucosídeos
3.
Int J Mol Sci ; 24(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37373157

RESUMO

The lipid profile of skin is fundamental in the maintenance of the protective barrier against the external environment. Signaling and constitutive lipids of this large organ are involved in inflammation, metabolism, aging, and wound healing, such as phospholipids, triglycerides, FFA, and sphingomyelin. Skin exposure to ultraviolet (UV) radiation results in a photoaging process that is an accelerated form of aging. UV-A radiation deeply penetrates the dermis and promotes damage to DNA, lipids, and proteins by increasing the generation of reactive oxygen species (ROS). Carnosine, an endogenous ß-alanyl-L-histidine dipeptide, demonstrated antioxidant properties that prevent photoaging and modification of skin protein profiling, making carnosine a compelling ingredient to consider for use in dermatology. The aim of this research was to investigate the modification of skin lipidome after UV-A treatment in presence or not of topic administration of carnosine. Quantitative analyses based on high-resolution mass spectrometry of nude mice skin-extracted lipids resulted in several modifications of barrier composition after UV-A radiation, with or without carnosine treatment. In total, 328 out of 683 molecules showed significant alteration-262 after UV-A radiation and 126 after UV-A and carnosine treatment versus controls. Importantly, the increased oxidized TGs after UV-A radiation, responsible of dermis photoaging, were completely reverted by carnosine application to prevent the UV-A damage. Network analyses also showed that the production of ROS and the calcium and TNF signaling were modulated by UV-A and carnosine. In conclusion, lipidome analyses attested the carnosine activity to prevent the UV-A damage, reducing the lipid oxidation, the inflammation, and the dysregulation of lipid skin barrier.


Assuntos
Carnosina , Envelhecimento da Pele , Dermatopatias , Animais , Camundongos , Carnosina/farmacologia , Carnosina/química , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Lipidômica , Raios Ultravioleta/efeitos adversos , Fosfolipídeos , Inflamação
4.
Molecules ; 28(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36771023

RESUMO

Plant secondary metabolites, known as phytochemicals, have recently gained much attention in light of the "circular economy", to reutilize waste products deriving from agriculture and food industry. Phytochemicals are known for their onco-preventive and chemoprotective effects, among several other beneficial properties. Apple phytochemicals have been extensively studied for their effectiveness in a wide range of diseases, cancer included. This review aims to provide a thorough overview of the main studies reported in the literature concerning apple phytochemicals, mostly polyphenols, in cancer prevention. Although there are many different mechanisms targeted by phytochemicals, the Nrf2 and NF-κB signaling pathways are the ones this review will be focused on, highlighting also the existing crosstalk between these two systems.


Assuntos
Malus , Neoplasias , Humanos , NF-kappa B/metabolismo , Malus/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Neoplasias/prevenção & controle , Neoplasias/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
5.
Molecules ; 28(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570694

RESUMO

Physiologically, smooth muscle cells (SMC) and nitric oxide (NO) produced by endothelial cells strictly cooperate to maintain vasal homeostasis. In atherosclerosis, where this equilibrium is altered, molecules providing exogenous NO and able to inhibit SMC proliferation may represent valuable antiatherosclerotic agents. Searching for dual antiproliferative and NO-donor molecules, we found that furoxans significantly decreased SMC proliferation in vitro, albeit with different potencies. We therefore assessed whether this property is dependent on their thiol-induced ring opening. Indeed, while furazans (analogues unable to release NO) are not effective, furoxans' inhibitory potency parallels with the electron-attractor capacity of the group in 3 of the ring, making this effect tunable. To demonstrate whether their specific block on G1-S phase could be NO-dependent, we supplemented SMCs with furoxans and inhibitors of GMP- and/or of the polyamine pathway, which regulate NO-induced SMC proliferation, but they failed in preventing the antiproliferative effect. To find the real mechanism of this property, our proteomics studies revealed that eleven cellular proteins (with SUMO1 being central) and networks involved in cell homeostasis/proliferation are modulated by furoxans, probably by interaction with adducts generated after degradation. Altogether, thanks to their dual effect and pharmacological flexibility, furoxans may be evaluated in the future as antiatherosclerotic molecules.


Assuntos
Doadores de Óxido Nítrico , Óxido Nítrico , Doadores de Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/metabolismo , Óxido Nítrico/metabolismo , Células Endoteliais/metabolismo , Músculo Liso Vascular , Proteômica , Proliferação de Células , Células Cultivadas , Miócitos de Músculo Liso
6.
Molecules ; 28(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37049725

RESUMO

The present paper reports a sustainable raw material obtained from the by-products derived from the industrial production of bergamot (Citrus × Bergamia Risso & Poiteau) essential oils. The procedure to obtain the raw material is designed to maintain as much of the bioactive components as possible and to avoid expensive chemical purification. It consists of spray-drying the fruit juice obtained by squeezing the fruits, which is mixed with the aqueous extract of the pulp, i.e., the solid residue remained after fruit pressing. The resulting powder bergamot juice (PBJ) contains multiple bioactive components, in particular, among others, soluble fibers, polyphenols and amino-acid betaines, such as stachydrine and betonicine. LC-MS analysis identified 86 compounds, with hesperetin, naringenin, apigenin and eridictyol glucosides being the main components. In the second part of the paper, dose-dependent anti-inflammatory activity of PBJ and of stachydrine was found, but neither of the compounds were effective in activating Nrf2. PBJ was then found to be effective in an in vivo model of a metabolic syndrome induced by a high-sugar, high-fat (HSF) diet and evidenced by a significant increase of the values related to a set of parameters: blood glucose, triglycerides, insulin resistance, systolic blood pressure, visceral adipose tissue and adiposity index. PBJ, when given to control rats, did not significantly change these values; in contrast, they were found to be greatly affected in rats receiving an HSF diet. The in vivo effect of PBJ can be ascribed not only to bergamot polyphenols with well-known anti-inflammatory, antioxidant and lipid-regulating effects, but also to the dietary fibers and to the non-phenolic constituents, such as stachydrine. Moreover, since PBJ was found to affect energy homeostasis and to regulate food intake, a mechanism on the regulation of energy homeostasis through leptin networking should also be considered and deserves further investigation.


Assuntos
Citrus , Óleos Voláteis , Animais , Ratos , Óleos Voláteis/farmacologia , Polifenóis/farmacologia , Polifenóis/química , Compostos Fitoquímicos/farmacologia , Espectrometria de Massas , Citrus/química , Anti-Inflamatórios/farmacologia
7.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163388

RESUMO

Carnosine is an endogenous ß-alanyl-L-histidine dipeptide endowed with antioxidant and carbonyl scavenger properties, which is able to significantly prevent the visible signs of aging and photoaging. To investigate the mechanism of action of carnosine on human skin proteome, a 3D scaffold-free spheroid model of primary dermal fibroblasts from a 50-year-old donor was adopted in combination with quantitative proteomics for the first time. The label free proteomics approach based on high-resolution mass spectrometry, integrated with network analyses, provided a highly sensitive and selective method to describe the human dermis spheroid model during long-term culture and upon carnosine treatment. Overall, 2171 quantified proteins allowed the in-depth characterization of the 3D dermis phenotype during growth and differentiation, at 14 versus 7 days of culture. A total of 485 proteins were differentially regulated by carnosine at 7 days, an intermediate time of culture. Of the several modulated pathways, most are involved in mitochondrial functionality, such as oxidative phosphorylation, TCA cycle, extracellular matrix reorganization and apoptosis. In long-term culture, functional modules related to oxidative stress were upregulated, inducing the aging process of dermis spheroids, while carnosine treatment prevented this by the downregulation of the same functional modules. The application of quantitative proteomics, coupled to advanced and relevant in vitro scaffold free spheroids, represents a new concrete application for personalized therapies and a novel care approach.


Assuntos
Carnosina/farmacologia , Derme/metabolismo , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Proteômica , Esferoides Celulares/metabolismo , Derme/citologia , Humanos , Pessoa de Meia-Idade , Esferoides Celulares/citologia
8.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012291

RESUMO

Advanced quantitative bioanalytical approaches in combination with network analyses allow us to answer complex biological questions, such as the description of changes in protein profiles under disease conditions or upon treatment with drugs. In the present work, three quantitative proteomic approaches-either based on labelling or not-in combination with network analyses were applied to a new in vitro cellular model of nonalcoholic fatty liver disease (NAFLD) for the first time. This disease is characterized by the accumulation of lipids, inflammation, fibrosis, and insulin resistance. Hepatic G2 cells were used as model, and NAFLD was induced by a complex of oleic acid and bovine albumin. The development of the disease was verified by lipid vesicle staining and by the increase in the expression of perilipin-2-a protein constitutively present in the vesicles during NAFLD. The nLC-MS/MS analyses of peptide samples obtained from three different proteomic approaches resulted in accurate and reproducible quantitative data of protein fold-change expressed in NAFLD versus control cells. The differentially regulated proteins were used to evaluate the involved and statistically enriched pathways. Network analyses highlighted several functional and disease modules affected by NAFLD, such as inflammation, oxidative stress defense, cell proliferation, and ferroptosis. Each quantitative approach allowed the identification of similar modulated pathways. The combination of the three approaches improved the power of statistical network analyses by increasing the number of involved proteins and their fold-change. In conclusion, the application of advanced bioanalytical approaches in combination with pathway analyses allows the in-depth and accurate description of the protein profile of an in vitro cellular model of NAFLD by using high-resolution quantitative mass spectrometry data. This model could be extremely useful in the discovery of new drugs to modulate the equilibrium NAFLD health state.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Bovinos , Humanos , Inflamação/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Perilipina-2/metabolismo , Proteômica , Espectrometria de Massas em Tandem
9.
Molecules ; 26(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34576925

RESUMO

A fully-detailed LC-MS qualitative profiling of red grape skin, extracted with a mixture of ethanol and water (70:30 v:v) has permitted the identification of 65 compounds which can be classified into the following chemical classes: organic and phenolic acids (14 compounds), stilbenoids (1 compound), flavanols (21 compounds), flavonols (15 compounds) and anthocyanins (14 compounds). The extraction yield obtained with water at different temperatures (100 °C, 70 °C, room temperature) was then evaluated and the overall polyphenol content indicates that EtOH:H2O solvent is the most efficient and selective for polyphenol extraction. However, by analyzing the recovery yield of each single polyphenol, we found that water extraction under heating conditions is effective (extraction yield similar or even better in respect to the binary solvent) for some polyphenolic classes, such as hydrophilic procyanidins, phenolic acids, flavonol glucosides and stilbenoids. However, according to their lipophilic character, a poor yield was found for the most lipophilic components, such as flavonol aglycones, and in general for anthocyanins. The radical scavenging activity was in accordance with the polyphenol content, and hence, much higher for the extract obtained with the binary solvent in respect to water extraction. All the tested extracts were found to have an anti-inflammatory activity in the R3/1 cell line with NF-kb reporter challenged with 0.01 µg/mL of IL-1α, in a 1 to 250 µg/mL concentration range. An intriguing result was that the EtOH:H2O extract was found to be superimposable with that obtained using water at 100 °C despite the lower polyphenol content. Taken together, the results show the bioactive potentialities of grape skin extracts and the possibility to exploit this rich industrial waste. Water extraction carried out by heating is an easy, low-cost and environmentally friendly extraction method for some polyphenol classes and may have great potential for extracts with anti-inflammatory activities.


Assuntos
Antioxidantes , Polifenóis , Vitis , Etanol/química , Solventes , Temperatura
10.
Molecules ; 26(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443686

RESUMO

Hyaluronic acid (HA) is a glycosaminoglycan very common in commercial products from pharmaceuticals to cosmetics due to its widespread distribution in humans and its diversified physico-chemical proprieties. Despite its extended use and preliminary evidence showing even also opposite activities to the native form, the precise cellular effects of HA at low-molecular-weight (LWM-HA) are currently unclear. The 'omics sciences currently in development offer a new and combined perspective on the cellular and organismal environment. This work aims to integrate lipidomics analyses to our previous quantitative proteomics one for a multi-omics vision of intra- and extra-cellular impact of different concentrations (0.125, 0.25, and 0.50%) of LMW-HA (20-50 kDa) on normal human dermal fibroblasts by LC-high resolution mass spectrometry (LC-HRMS). Untargeted lipidomics allowed us to identify 903 unique lipids mostly represented by triacylglycerols, ceramides, and phosphatidylcholines. According to proteomics analyses, LMW-HA 0.50% was the most effective concentration also in the lipidome rearrangement especially stimulating the synthesis of ceramides involved in skin hydration and reparation, cell signaling, and energy balance. Finally, integrative analyses showed 25 nodes covering several intra- and extra-cellular functions. The more complete comprehension of intra- and extra-cellular effects of LMW-HA here pointed out will be useful to further exploit its features and improve current formulations even though further studies on lipids biosynthesis and degradation are necessary.


Assuntos
Derme/citologia , Fibroblastos/metabolismo , Ácido Hialurônico/farmacologia , Metabolômica , Fibroblastos/efeitos dos fármacos , Humanos , Lipidômica , Peso Molecular , Análise de Componente Principal , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteômica
11.
Amino Acids ; 51(1): 103-114, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30302566

RESUMO

Carnosine (beta-alanyl-L-histidine) and its methylated analogue anserine are present in relevant concentrations in the omnivore human diet. Several studies reported promising therapeutic potential for carnosine in various rodent models of oxidative stress and inflammation-related chronic diseases. Nevertheless, the poor serum stability of carnosine in humans makes the translation of rodent models hard. Even though anserine and carnosine have similar biochemical properties, anserine has better serum stability. Despite this interesting profile, the research on anserine is scarce. The aim of this study was to explore the bioavailability and stability of synthesized anserine by (1) performing in vitro stability experiments in human plasma and molecular modelling studies and by (2) evaluating the plasma and urinary pharmacokinetic profile in healthy volunteers following different doses of anserine (4-10-20 mg/kg body weight). A bio-analytical method for measuring anserine levels was developed and validated using liquid chromatography-electrospray mass spectrometry. Both plasma (CMAX: 0.54-1.10-3.12 µM) and urinary (CMAX: 0.09-0.41-0.72 mg/mg creatinine) anserine increased dose-dependently following ingestion of 4-10-20 anserine mg/kg BW, respectively. The inter-individual variation in plasma anserine was mainly explained by the activity (R2 = 0.75) and content (R2 = 0.77) of the enzyme serum carnosinase-1. Compared to carnosine, a lower interaction energy of anserine with carnosinase-1 was suggested by molecular modelling studies. Conversely, the two dipeptides seems to have similar interaction with the PEPT1 transporter. It can be concluded that nutritionally relevant doses of synthesized anserine are well-absorbed and that its degradation by serum carnosinase-1 is less pronounced compared to carnosine. This makes anserine a good candidate as a more stable carnosine-analogue to attenuate chronic diseases in humans.


Assuntos
Anserina/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Adulto , Anserina/sangue , Anserina/farmacocinética , Anserina/urina , Carnosina/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Masculino
12.
Methods ; 144: 152-174, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29890284

RESUMO

The interaction of small compounds (i.e. ligands) with macromolecules or macromolecule assemblies (i.e. targets) is the mechanism of action of most of the drugs available today. Mass spectrometry is a popular technique for the interrogation of macromolecule-ligand interactions and therefore is also widely used in drug discovery and development. Thanks to its versatility, mass spectrometry is used for multiple purposes such as biomarker screening, identification of the mechanism of action, ligand structure optimization or toxicity assessment. The evolution and automation of the instruments now allows the development of high throughput methods with high sensitivity and a minimized false discovery rate. Herein, all these approaches are described with a focus on the methods for studying macromolecule-ligand interaction aimed at defining the structure-activity relationships of drug candidates, along with their mechanism of action, metabolism and toxicity.


Assuntos
Substâncias Macromoleculares/metabolismo , Espectrometria de Massas/métodos , DNA/química , DNA/metabolismo , Descoberta de Drogas/métodos , Ligantes , Substâncias Macromoleculares/química , Proteínas/química , Proteínas/metabolismo , RNA/química , RNA/metabolismo , Relação Estrutura-Atividade
13.
Molecules ; 24(3)2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30699941

RESUMO

Herein, we reported a detailed profiling of soluble components of two fermented varieties of Chinese green tea, namely raw and ripe pu-erh. The identification and quantification of the main components was carried out by means of mass spectrometry and UV spectroscopy, after chromatographic separation. The antioxidant capacity towards different radical species, the anti-microbial and the enzyme inhibition activities of the extracts were then correlated to their main constituents. Despite a superimposable qualitative composition, a similar caffeine content, and similar enzyme inhibition and antimicrobial activities, raw pu-erh tea extract had a better antioxidant capacity owing to its higher polyphenol content. However, the activity of raw pu-erh tea seems not to justify its higher production costs and ripe variety appears to be a valid and low-cost alternative for the preparation of products with antioxidant or antimicrobial properties.


Assuntos
Antioxidantes/química , Camellia sinensis/química , Cromatografia Líquida/métodos , Extratos Vegetais/química , Polifenóis/química
14.
J Sep Sci ; 41(6): 1240-1246, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29230946

RESUMO

Carnosine is present in high concentrations in specific human tissues such as the skeletal muscle, and among its biological functions, the remarkable scavenging activity toward reactive carbonyl species is noteworthy. Although the two enantiomers show almost identical scavenging reactivity toward reactive carbonyl species, only d-carnosine is poorly adsorbed at the gastrointestinal level and is stable in human plasma. Direct methods for the enantioselective analysis of carnosine are still missing even though they could find more effective applications in the analysis of complex matrices. In the present study, the use of two different chiral stationary phases is presented. A chiral ligand-exchange chromatography stationary phase based on N,S-dioctyl-d-penicillamine resulted in the direct enantioseparation of carnosine. Indeed, running the analysis at 25°C and 1.0 mL/min with a 1.5 mM copper(II) sulfate concentration allowed us to obtain separation and resolution factors of 3.37 and 12.34, respectively. However, the use of a copper(II)-containing eluent renders it hardly compatible with mass spectrometry detectors. With the teicoplanin-based stationary phase, a mass spectrometry compatible method was successfully developed. Indeed, a water/methanol 60:40 v/v pH 3.1 eluent flowed at 1.0 mL/min and with a 25°C column temperature produced separation and resolution factors of 2.60 and 4.16, respectively.


Assuntos
Carnosina/isolamento & purificação , Penicilamina/química , Teicoplanina/química , Carnosina/química , Cromatografia Líquida de Alta Pressão , Estrutura Molecular , Estereoisomerismo
15.
Biochem Biophys Res Commun ; 492(3): 487-492, 2017 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-28834691

RESUMO

The study combines HPLC-based with MS-based competitive analyses to evaluate the quenching activity of a set of carnosine derivatives towards methylglyoxal (MGO) and malondialdehyde (MDA) chosen as representative of α- and ß-dicarbonyls, respectively. The obtained results underline that these derivatives are moderately reactive towards MDA with which they form the corresponding N-propenal adduct via Michael addition. In contrast they proved a rather poor quenching activity towards MGO with which they can condense to give MOLD-like adducts through a concerted mechanism involving more quenchers molecules. Even though both quenching mechanisms involve the amino group in its neutral form, in silico studies revealed that the reported reactivity values depend on different stereo-electronic parameters which are reflected in the different observed quenching mechanism. Finally, the MGO quenching reactivity and the unselective (and unwanted) pyridoxal quenching are found to be influenced by the same parameters thus rationalizing the known difficulty in the design of potent and selective quenchers towards ß-dicarbonyls.


Assuntos
Carnosina/química , Malondialdeído/química , Aldeído Pirúvico/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Estrutura Molecular
16.
Mol Pharm ; 14(6): 1998-2009, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28409629

RESUMO

In this work we made an attempt to assess the effect of drug-induced changes of flexibility on the penetration of deformable vesicles into the human skin. Eight cationic liposomes with different degrees of flexibility were obtained by entrapping unfractionated heparin, enoxaparin, and nadroparin. The deformability was studied by a novel, facile, and reliable extrusion assay appositely developed and validated by means of quantitative nanoscale mechanical AFM measurements of vesicle elastic modulus (log10(YM)). The proposed extrusion assay, determining the forces involved in vesicles deformation, resulted very sensitive to evidence of minimal changes in bilayer rigidity (σ) and vesicle deformation (K). The drug loading caused a reduction of liposome flexibility with respect to the reference plain liposomes and in accordance to the heparin type, drug to cationic lipid (DOTAP) ratio, and drug distribution within the vesicles. Interestingly, the σ and log10(YM) values perfectly correlated (R2 = 0.935), demonstrating the reliability of the deformability data obtained with both approaches. The combination of TEM and LC-MS/MS spectrometry allowed the pattern of the penetration of the entire vesicles into the skin to be followed. In all cases, intact liposomes in the epidermis layers were observed and a relationship between the depth of penetration and the liposome flexibility was found, supporting the hypothesis of the whole vesicle penetration mechanism. Moreover, the results of the extent (R24) of vesicle penetration in the human skin samples showed a direct relation to the flexibility values (σ1 = 0.65 ± 0.10 MPa → R24 = 3.33 ± 0.02 µg/mg; σ2 = 0.95 ± 0.04 MPa → R24 = 1.18 ± 0.26 µg/mg; σ3 = 1.89 ± 0.30 MPa → R24 = 0.53 ± 0.33 µg/mg).


Assuntos
Lipossomos/química , Lipossomos/metabolismo , Pele/metabolismo , Módulo de Elasticidade , Heparina/química , Humanos , Lipossomos/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Espectrometria de Massas em Tandem
17.
Chem Res Toxicol ; 27(9): 1566-74, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25088930

RESUMO

This study addresses the detection and characterization of the modification of human serum albumin (HSA) by amoxicillin (AX) in ex vivo samples from healthy subjects under oral amoxicillin administration (acute intake of 1 g every 8 h for 48 h). To reach this goal, we used an analytical strategy based on targeted and untargeted mass spectrometric approaches. Plasma samples withdrawn before AX oral intake represented the negative control samples to test the method selectivity, whereas HSA incubated in vitro with AX was the positive control. Different MS strategies were developed, particularly (1) multiple reaction monitoring (MRM) and precursor ion scan (PIS) using a HPLC system coupled to a triple quadrupole MS analyzer and (2) a dedicated data-dependent scan and a customized targeted MS/MS analysis carried out using a nano-LC system coupled to a high-resolution MS system (LTQ Orbitrap XL). Lys 190 was identified as the only modification site of HSA in the ex vivo samples. The AX adduct was identified and fully characterized by complementary targeted approaches based on triple quadrupole (MRM mode) and orbitrap (SIC mode) mass analyzers. The SIC mode also permitted the relative amount of AX-adducted HSA to be measured, ranging from 1 to 2% (6-12 µM) at 24 and 48 h after the oral intake. No adduct in any ex vivo sample was identified by the untargeted methods (PIS and data-dependent scan mode analysis). The results on one hand indicate that MS, in particular high-resolution MS, analysis represents a suitable analytical tool for the identification/characterization of covalently modified proteins/peptides; on the other hand, they give deeper insight into AX-induced protein haptenation, which is required to better understand the mechanisms involved in AX-elicited allergic reactions.


Assuntos
Amoxicilina/química , Albumina Sérica/química , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Humanos , Peptídeos/análise , Peptídeos/química , Albumina Sérica/metabolismo , Espectrometria de Massas por Ionização por Electrospray
18.
Antioxidants (Basel) ; 12(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36829859

RESUMO

Dermis fibroblasts are very sensitive to penetrating UVA radiation and induce photo-damage. To protect skin cells against this environmental damage, there is an urgent need for effective compounds, specifically targeting UVA-induced mitochondrial injury. This study aimed to analyze the effect of carnosine on the proteome of UVA-irradiated human skin fibroblast, cultured in a three-dimensional (3D) biological system recapitulating dermal compartment as a test system to investigate the altered cellular pathways after 48 h and 7 days of culture with or without carnosine treatment. The obtained results indicate that UVA dysregulates Oxidative Phosphorylation, the Fibrosis Signaling Pathway, Glycolysis I and Nrf2-mediated Oxidative Stress Response. Carnosine exercises provide a protective function against the harmful effects of UVA radiation by activating the Nrf2 pathway with the upregulations of some ROS-detoxifying enzymes such as the glutathione S-transferase (GST) protein family. Additionally, carnosine regulates the activation of the Epithelial Adherens Junction and Wound Healing Signaling Pathway by mediating the activation of structural proteins such as vinculin and zyxin as well as fibronectin 1 and collagen type XVIII alpha 1 chain against UVA-induced changes.

19.
Talanta ; 252: 123824, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027618

RESUMO

Mpro represents one of the most promising drug targets for SARS-Cov-2, as it plays a crucial role in the maturation of viral polyproteins into functional proteins. HTS methods are currently used to screen Mpro inhibitors, and rely on searching chemical databases and compound libraries, meaning that they only consider previously structurally clarified and isolated molecules. A great advancement in the hit identification strategy would be to set-up an approach aimed at exploring un-deconvoluted mixtures of compounds such as plant extracts. Hence, the aim of the present study is to set-up an analytical platform able to fish-out bioactive molecules from complex natural matrices even where there is no knowledge on the constituents. The proposed approach begins with a metabolomic step aimed at annotating the MW of the matrix constituents. A further metabolomic step is based on identifying those natural electrophilic compounds able to form a Michael adduct with thiols, a peculiar chemical feature of many Mpro inhibitors that covalently bind the catalytic Cys145 in the active site, thus stabilizing the complex. A final step consists of incubating recombinant Mpro with natural extracts and identifying compounds adducted to the residues within the Mpro active site by bottom-up proteomic analysis (nano-LC-HRMS). Data analysis is based on two complementary strategies: (i) a targeted search applied by setting the adducted moieties identified as Michael acceptors of Cys as variable modifications; (ii) an untargeted approach aimed at identifying the whole range of adducted peptides containing Cys145 on the basis of the characteristic b and y fragment ions independent of the adduct. The method was set-up and then successfully tested to fish-out bioactive compounds from the crude extract of Scutellaria baicalensis, a Chinese plant containing the catechol-like flavonoid baicalin and its corresponding aglycone baicalein which are well-established inhibitors of Mpro. Molecular dynamics (MD) simulations were carried out in order to explore the binding mode of baicalin and baicalein, within the SARS-CoV-2 Mpro active site, allowing a better understanding of the role of the nucleophilic residues (i.e. His41, Cys145, His163 and His164) in the protein-ligand recognition process.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Proteases 3C de Coronavírus , Peptídeo Hidrolases , Proteômica , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Simulação de Acoplamento Molecular , Misturas Complexas , Antivirais/farmacologia , Antivirais/química
20.
Elife ; 122023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38014932

RESUMO

Compelling evidence has accumulated on the role of oxidative stress on the endothelial cell (EC) dysfunction in acute coronary syndrome. Unveiling the underlying metabolic determinants has been hampered by the scarcity of appropriate cell models to address cell-autonomous mechanisms of EC dysfunction. We have generated endothelial cells derived from thrombectomy specimens from patients affected with acute myocardial infarction (AMI) and conducted phenotypical and metabolic characterizations. AMI-derived endothelial cells (AMIECs) display impaired growth, migration, and tubulogenesis. Metabolically, AMIECs displayed augmented ROS and glutathione intracellular content, with a diminished glucose consumption coupled to high lactate production. In AMIECs, while PFKFB3 protein levels of were downregulated, PFKFB4 levels were upregulated, suggesting a shunting of glycolysis towards the pentose phosphate pathway, supported by upregulation of G6PD. Furthermore, the glutaminolytic enzyme GLS was upregulated in AMIECs, providing an explanation for the increase in glutathione content. Finally, AMIECs displayed a significantly higher mitochondrial membrane potential than control ECs, which, together with high ROS levels, suggests a coupled mitochondrial activity. We suggest that high mitochondrial proton coupling underlies the high production of ROS, balanced by PPP- and glutaminolysis-driven synthesis of glutathione, as a primary, cell-autonomous abnormality driving EC dysfunction in AMI.


Assuntos
Células Endoteliais , Infarto do Miocárdio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , Reprogramação Metabólica , Estresse Oxidativo , Glicólise , Glutationa/metabolismo , Fosfofrutoquinase-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA