Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35808304

RESUMO

The educational sector has made extraordinary efforts to neutralize the impact of the pandemic caused by COVID-19, forcing teachers, scholars, and academic personnel to change the way education is delivered by developing creative and technological solutions to improve the landscape for education. The Internet of Things (IoT) is crucial for the educational transition to digital and virtual environments. This paper presents the integration of IoT technology in the Two-Dimensional Cartesian Coordinate System Educational Toolkit (2D-CACSET), to transform it into MEIoT 2D-CACSET; which includes educational mechatronics and the IoT. The Educational Mechatronics Conceptual Framework (EMCF) is extended to consider the virtual environment, enabling knowledge construction in virtual concrete, virtual graphic, and virtual abstract levels. Hence, the students acquire this knowledge from a remote location to apply it further down their career path. Three instructional designs are designed for this work using the MEIoT 2D-CACSET to learn about coordinate axes, quadrants, and a point in the 2D Coordinate Cartesian System. This work is intended to provide an IoT educational technology to offer an adequate response to the educational system's current context.


Assuntos
COVID-19 , Internet das Coisas , Humanos , Aprendizagem , Pandemias , Estudantes
2.
Sensors (Basel) ; 22(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35957223

RESUMO

Industry 4.0 involves various areas of engineering such as advanced robotics, Internet of Things, simulation, and augmented reality, which are focused on the development of smart factories. The present work presents the design and application of the methodology for the development of augmented reality applications (MeDARA) using a concrete, pictorial, and abstract approach with the intention of promoting the knowledge, skills, and attitudes of the students within the conceptual framework of educational mechatronics (EMCF). The flight of a drone is presented as a case study, where the concrete level involves the manipulation of the drone in a simulation; the graphic level requires the elaboration of an experiential storyboard that shows the scenes of the student's interaction with the drone in the concrete level; and finally, the abstract level involves the planning of user stories and acceptance criteria, the computer design of the drone, the mock-ups of the application, the coding in Unity and Android Studio, and its integration to perform unit and acceptance tests. Finally, evidence of the tests is shown to demonstrate the results of the application of the MeDARA.


Assuntos
Realidade Aumentada , Simulação por Computador , Humanos , Estudantes , Dispositivos Aéreos não Tripulados
3.
Sensors (Basel) ; 21(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673511

RESUMO

Due to the emergence of the coronavirus disease (COVID 19), education systems in most countries have adapted and quickly changed their teaching strategy to online teaching. This paper presents the design and implementation of a novel Internet of Things (IoT) device, called MEIoT weather station, which incorporates an exogenous disturbance input, within the National Digital Observatory of Smart Environments (OBNiSE) architecture. The exogenous disturbance input involves a wind blower based on a DC brushless motor. It can be controlled, via Node-RED platform, manually through a sliding bar, or automatically via different predefined profile functions, modifying the wind speed and the wind vane sensor variables. An application to Engineering Education is presented with a case study that includes the instructional design for the least-squares regression topic for linear, quadratic, and cubic approximations within the Educational Mechatronics Conceptual Framework (EMCF) to show the relevance of this proposal. This work's main contribution to the state-of-the-art is to turn a weather monitoring system into a hybrid hands-on learning approach thanks to the integrated exogenous disturbance input.


Assuntos
Internet das Coisas/instrumentação , Meteorologia/instrumentação , Tempo (Meteorologia) , Computadores
4.
Sensors (Basel) ; 20(5)2020 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-32182659

RESUMO

Humanity is currently experiencing one of the short periods of transition thanks to novel sensing solutions for smart cities that bring the future to today. Overpopulation of cities demands the development of solid strategic plannings that uses infrastructure, innovation, and technology to adapt to rapid changes. To improve mobility in cities with a larger and larger vehicle fleet, a novel sensing solution that is the cornerstone of a smart parking system, the smart vehicular presence sensor (SPIN-V, in its Spanish abbreviation), is presented. The SPIN-V is composed of a small single-board computer, distance sensor, camera, LED indicator, buzzer, and battery and devoted to obtain the status of a parking space. This smart mobility project involves three main elements, namely the SPIN-V, a mobile application, and a monitoring center, working together to monitor, control, process, and display the parking space information in real-time to the drivers. In addition, the design and implementation of the three elements of the complete architecture are presented.

5.
Sensors (Basel) ; 21(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383917

RESUMO

This paper presents the design and development of an IoT device, called MEIoT weather station, which combines the Educational Mechatronics and IoT to develop the required knowledge and skills for Industry 4.0. MEIoT weather station connects to the internet, measures eight weather variables, and upload the sensed data to the cloud. The MEIoT weather station is the first device working with the IoT architecture of the National Digital Observatory of Intelligent Environments. In addition, an IoT open platform, GUI-MEIoT, serves as a graphic user interface. GUI-MEIoT is used to visualize the real-time data of the weather variables, it also shows the historical data collected, and allows to export them to a csv file. Finally, an OBNiSE architecture application to Engineering Education is presented with a dynamic system case of study that includes the instructional design carried out within the Educational Mechatronics Conceptual Framework (EMCF) to show the relevance of this proposal. This work main contribution to the state of art is the design and integration of the OBNiSE architecture within the EMCF offering the possibility to add more IoT devices for several smart domains such as smart campus, smart cities, smart people and smart industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA