Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290009

RESUMO

BACKGROUNDMalaria transmission-blocking vaccines aim to interrupt the transmission of malaria from one person to another.METHODSThe candidates R0.6C and ProC6C share the 6C domain of the Plasmodium falciparum sexual-stage antigen Pfs48/45. R0.6C utilizes the glutamate-rich protein (GLURP) as a carrier, and ProC6C includes a second domain (Pfs230-Pro) and a short 36-amino acid circumsporozoite protein (CSP) sequence. Healthy adults (n = 125) from a malaria-endemic area of Burkina Faso were immunized with 3 intramuscular injections, 4 weeks apart, of 30 µg or 100 µg R0.6C or ProC6C each adsorbed to Alhydrogel (AlOH) adjuvant alone or in combination with Matrix-M (15 µg or 50 µg, respectively). The allocation was random and double-blind for this phase I trial.RESULTSThe vaccines were safe and well tolerated with no vaccine-related serious adverse events. A total of 7 adverse events, mild to moderate in intensity and considered possibly related to the study vaccines, were recorded. Vaccine-specific antibodies were highest in volunteers immunized with 100 µg ProC6C-AlOH with Matrix-M, and 13 of 20 (65%) individuals in the group showed greater than 80% transmission-reducing activity (TRA) when evaluated in the standard membrane feeding assay at 15 mg/mL IgG. In contrast, R0.6C induced sporadic TRA.CONCLUSIONAll formulations were safe and well tolerated in a malaria-endemic area of Africa in healthy adults. The ProC6C-AlOH/Matrix-M vaccine elicited the highest levels of functional antibodies, meriting further investigation.TRIAL REGISTRATIONPan-African Clinical Trials Registry (https://pactr.samrc.ac.za) PACTR202201848463189.FUNDINGThe study was funded by the European and Developing Countries Clinical Trials Partnership (grant RIA2018SV-2311).


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Adulto , Humanos , Plasmodium falciparum , Proteínas de Protozoários , Adjuvantes Imunológicos , Antígenos de Protozoários , Hidróxido de Alumínio , Anticorpos Antiprotozoários
2.
Nat Commun ; 15(1): 4857, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849365

RESUMO

Reticulocyte-binding protein homologue 5 (RH5), a leading blood-stage Plasmodium falciparum malaria vaccine target, interacts with cysteine-rich protective antigen (CyRPA) and RH5-interacting protein (RIPR) to form an essential heterotrimeric "RCR-complex". We investigate whether RCR-complex vaccination can improve upon RH5 alone. Using monoclonal antibodies (mAbs) we show that parasite growth-inhibitory epitopes on each antigen are surface-exposed on the RCR-complex and that mAb pairs targeting different antigens can function additively or synergistically. However, immunisation of female rats with the RCR-complex fails to outperform RH5 alone due to immuno-dominance of RIPR coupled with inferior potency of anti-RIPR polyclonal IgG. We identify that all growth-inhibitory antibody epitopes of RIPR cluster within the C-terminal EGF-like domains and that a fusion of these domains to CyRPA, called "R78C", combined with RH5, improves the level of in vitro parasite growth inhibition compared to RH5 alone. These preclinical data justify the advancement of the RH5.1 + R78C/Matrix-M™ vaccine candidate to Phase 1 clinical trial.


Assuntos
Anticorpos Monoclonais , Anticorpos Antiprotozoários , Antígenos de Protozoários , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Animais , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Feminino , Malária Falciparum/prevenção & controle , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Antígenos de Protozoários/imunologia , Ratos , Anticorpos Antiprotozoários/imunologia , Anticorpos Monoclonais/imunologia , Humanos , Epitopos/imunologia , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo
3.
Cell Rep Med ; 5(7): 101654, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39019011

RESUMO

Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) is a leading blood-stage malaria vaccine antigen target, currently in a phase 2b clinical trial as a full-length soluble protein/adjuvant vaccine candidate called RH5.1/Matrix-M. We identify that disordered regions of the full-length RH5 molecule induce non-growth inhibitory antibodies in human vaccinees and that a re-engineered and stabilized immunogen (including just the alpha-helical core of RH5) induces a qualitatively superior growth inhibitory antibody response in rats vaccinated with this protein formulated in Matrix-M adjuvant. In parallel, bioconjugation of this immunogen, termed "RH5.2," to hepatitis B surface antigen virus-like particles (VLPs) using the "plug-and-display" SpyTag-SpyCatcher platform technology also enables superior quantitative antibody immunogenicity over soluble protein/adjuvant in vaccinated mice and rats. These studies identify a blood-stage malaria vaccine candidate that may improve upon the current leading soluble protein vaccine candidate RH5.1/Matrix-M. The RH5.2-VLP/Matrix-M vaccine candidate is now under evaluation in phase 1a/b clinical trials.


Assuntos
Anticorpos Antiprotozoários , Vacinas Antimaláricas , Plasmodium falciparum , Proteínas de Protozoários , Vacinas de Partículas Semelhantes a Vírus , Animais , Vacinas Antimaláricas/imunologia , Anticorpos Antiprotozoários/imunologia , Plasmodium falciparum/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Humanos , Camundongos , Proteínas de Protozoários/imunologia , Ratos , Malária Falciparum/prevenção & controle , Malária Falciparum/imunologia , Antígenos de Protozoários/imunologia , Feminino , Proteínas de Transporte/imunologia , Camundongos Endogâmicos BALB C
4.
Lancet Infect Dis ; 24(10): 1105-1117, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38880111

RESUMO

BACKGROUND: A blood-stage Plasmodium falciparum malaria vaccine would provide a second line of defence to complement partially effective or waning immunity conferred by the approved pre-erythrocytic vaccines. RH5.1 is a soluble protein vaccine candidate for blood-stage P falciparum, formulated with Matrix-M adjuvant to assess safety and immunogenicity in a malaria-endemic adult and paediatric population for the first time. METHODS: We did a non-randomised, phase 1b, single-centre, dose-escalation, age de-escalation, first-in-human trial of RH5.1/Matrix-M in Bagamoyo, Tanzania. We recruited healthy adults (aged 18-45 years) and children (aged 5-17 months) to receive the RH5.1/Matrix-M vaccine candidate in the following three-dose regimens: 10 µg RH5.1 at 0, 1, and 2 months (Adults 10M), and the higher dose of 50 µg RH5.1 at 0 and 1 month and 10 µg RH5.1 at 6 months (delayed-fractional third dose regimen; Adults DFx). Children received either 10 µg RH5.1 at 0, 1, and 2 months (Children 10M) or 10 µg RH5.1 at 0, 1, and 6 months (delayed third dose regimen; Children 10D), and were recruited in parallel, followed by children who received the dose-escalation regimen (Children DFx) and children with higher malaria pre-exposure who also received the dose-escalation regimen (High Children DFx). All RH5.1 doses were formulated with 50 µg Matrix-M adjuvant. Primary outcomes for vaccine safety were solicited and unsolicited adverse events after each vaccination, along with any serious adverse events during the study period. The secondary outcome measures for immunogenicity were the concentration and avidity of anti-RH5.1 serum IgG antibodies and their percentage growth inhibition activity (GIA) in vitro, as well as cellular immunogenicity to RH5.1. All participants receiving at least one dose of vaccine were included in the primary analyses. This trial is registered at ClinicalTrials.gov, NCT04318002, and is now complete. FINDINGS: Between Jan 25, 2021, and April 15, 2021, we recruited 12 adults (six [50%] in the Adults 10M group and six [50%] in the Adults DFx group) and 48 children (12 each in the Children 10M, Children 10D, Children DFx, and High Children DFx groups). 57 (95%) of 60 participants completed the vaccination series and 55 (92%) completed 22 months of follow-up following the third vaccination. Vaccinations were well-tolerated across both age groups. There were five serious adverse events involving four child participants during the trial, none of which were deemed related to vaccination. RH5-specific T cell and serum IgG antibody responses were induced by vaccination and purified total IgG showed in vitro GIA against P falciparum. We found similar functional quality (ie, GIA per µg RH5-specific IgG) across all age groups and dosing regimens at 14 days after the final vaccination; the concentration of RH5.1-specific polyclonal IgG required to give 50% GIA was 14·3 µg/mL (95% CI 13·4-15·2). 11 children were vaccinated with the delayed third dose regimen and showed the highest median anti-RH5 serum IgG concentration 14 days following the third vaccination (723 µg/mL [IQR 511-1000]), resulting in all 11 who received the full series showing greater than 60% GIA following dilution of total IgG to 2·5 mg/mL (median 88% [IQR 81-94]). INTERPRETATION: The RH5.1/Matrix-M vaccine candidate shows an acceptable safety and reactogenicity profile in both adults and 5-17-month-old children residing in a malaria-endemic area, with all children in the delayed third dose regimen reaching a level of GIA previously associated with protective outcome against blood-stage P falciparum challenge in non-human primates. These data support onward efficacy assessment of this vaccine candidate against clinical malaria in young African children. FUNDING: The European and Developing Countries Clinical Trials Partnership; the UK Medical Research Council; the UK Department for International Development; the National Institute for Health and Care Research Oxford Biomedical Research Centre; the Division of Intramural Research, National Institute of Allergy and Infectious Diseases; the US Agency for International Development; and the Wellcome Trust.


Assuntos
Anticorpos Antiprotozoários , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Humanos , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Tanzânia , Adulto , Masculino , Malária Falciparum/prevenção & controle , Malária Falciparum/imunologia , Feminino , Adolescente , Plasmodium falciparum/imunologia , Adulto Jovem , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Lactente , Pessoa de Meia-Idade , Proteínas de Protozoários/imunologia , Antígenos de Protozoários/imunologia , Voluntários Saudáveis , Proteínas de Transporte , Saponinas , Nanopartículas
5.
Hum Vaccin Immunother ; 19(1): 2189885, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37113023

RESUMO

Matrix-M™ adjuvant is a key component of several novel vaccine candidates. The Matrix-M adjuvant consists of two distinct fractions of saponins purified from the Quillaja saponaria Molina tree, combined with cholesterol and phospholipids to form 40-nm open cage-like nanoparticles, achieving potent adjuvanticity with a favorable safety profile. Matrix-M induces early activation of innate immune cells at the injection site and in the draining lymph nodes. This translates into improved magnitude and quality of the antibody response to the antigen, broadened epitope recognition, and the induction of a Th1-dominant immune response. Matrix-M-adjuvanted vaccines have a favorable safety profile and are well tolerated in clinical trials. In this review, we discuss the latest findings on the mechanisms of action, efficacy, and safety of Matrix-M adjuvant and other saponin-based adjuvants, with a focus on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) subunit vaccine candidate NVX-CoV2373 developed to prevent coronavirus disease 2019 (COVID-19).


Assuntos
COVID-19 , Saponinas , Vacinas , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Adjuvantes Imunológicos
6.
Nucleosides Nucleotides Nucleic Acids ; 27(3): 244-60, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18260009

RESUMO

Nineteen lipophilic thymidine phosphate-mimicking compounds were designed and synthesized as potential inhibitors of thymidine monophosphate kinase of Bacillus anthracis, a Gram-positive bacterium that causes anthrax. These thymidine analogues were substituted at the 5'-postion with sulfonamide-, amide-, (thio)urea-, or triazole groups, which served as lipophilic surrogates for phosphate. Three of the tested compounds produced inhibition of B. anthracis Sterne growth and/or thymidine monophosphate activity. Additional studies will be necessary to elucidate the potential of this type of B. anthracis thymidine monophosphate inhibitors as novel antibiotics in the treatment of anthrax.


Assuntos
Antibacterianos/síntese química , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/enzimologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Núcleosídeo-Fosfato Quinase/antagonistas & inibidores , Timidina/análogos & derivados , Antibacterianos/química , Antibacterianos/farmacologia , Bacillus anthracis/crescimento & desenvolvimento , Desenho de Fármacos , Inibidores Enzimáticos/química , Timidina/farmacologia
7.
FEBS J ; 274(3): 727-37, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17288553

RESUMO

Thymidine kinase (TK) is the key enzyme in salvaging thymidine to produce thymidine monophosphate. Owing to its ability to phosphorylate nucleoside analogue prodrugs, TK has gained attention as a rate-limiting drug activator. We describe the structures of two bacterial TKs, one from the pathogen Bacillus anthracis in complex with the substrate dT, and the second from the food-poison-associated Bacillus cereus in complex with the feedback inhibitor dTTP. Interestingly, in contrast with previous structures of TK in complex with dTTP, in this study dTTP occupies the phosphate donor site and not the phosphate acceptor site. This results in several conformational changes compared with TK structures described previously. One of the differences is the way tetramers are formed. Unlike B. anthracis TK, B. cereus TK shows a loose tetramer. Moreover, the lasso-domain is in open conformation in B. cereus TK without any substrate in the active site, whereas in B. anthracis TK the loop conformation is closed and thymidine occupies the active site. Another conformational difference lies within a region of 20 residues that we refer to as phosphate-binding beta-hairpin. The phosphate-binding beta-hairpin seems to be a flexible region of the enzyme which becomes ordered upon formation of hydrogen bonds to the alpha-phosphate of the phosphate donor, dTTP. In addition to descriptions of the different conformations that TK may adopt during the course of reaction, the oligomeric state of the enzyme is investigated.


Assuntos
Bacillus anthracis/enzimologia , Bacillus cereus/enzimologia , Timidina Quinase/química , Sequência de Aminoácidos , Bacillus anthracis/genética , Bacillus cereus/genética , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Timidina Quinase/genética , Timidina Quinase/metabolismo
8.
FEBS J ; 272(24): 6365-72, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16336273

RESUMO

Thymidine kinases have been found in most organisms, from viruses and bacteria to mammals. Ureaplasma urealyticum (parvum), which belongs to the class of cell-wall-lacking Mollicutes, has no de novo synthesis of DNA precursors and therefore has to rely on the salvage pathway. Thus, thymidine kinase (Uu-TK) is the key enzyme in dTTP synthesis. Recently the 3D structure of Uu-TK was determined in a feedback inhibitor complex, demonstrating that a lasso-like loop binds the thymidine moiety of the feedback inhibitor by hydrogen bonding to main-chain atoms. Here the structure with the substrate deoxythymidine is presented. The substrate binds similarly to the deoxythymidine part of the feedback inhibitor, and the lasso-like loop binds the base and deoxyribose moieties as in the complex determined previously. The catalytic base, Glu97, has a different position in the substrate complex from that in the complex with the feedback inhibitor, having moved in closer to the 5'-OH of the substrate to form a hydrogen bond. The phosphorylation of and inhibition by several nucleoside analogues were investigated and are discussed in the light of the substrate binding pocket, in comparison with human TK1. Kinetic differences between Uu-TK and human TK1 were observed that may be explained by structural differences. The tight interaction with the substrate allows minor substitutions at the 3 and 5 positions of the base, only fluorine substitutions at the 2'-Ara position, but larger substitutions at the 3' position of the deoxyribose.


Assuntos
Timidina Quinase/química , Ureaplasma urealyticum/enzimologia , Sítios de Ligação , Sistemas de Liberação de Medicamentos , Humanos , Cinética , Ligação Proteica , Conformação Proteica , Timidina Quinase/antagonistas & inibidores , Nucleotídeos de Timina/biossíntese
9.
Cell Mol Immunol ; 8(4): 296-304, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21358667

RESUMO

Antibodies against type II collagen (CII) are essential for development of collagen-induced arthritis (CIA), but how and where the B-cell response to CII is initiated is not fully known. We show here that naive DBA/1 mice display naturally reactive IgM and IgG anti-CII producing B cells prior to immunization. The CII-reactive B cells were observed in the spleen and recognized as marginal zone (MZ) B cells. After CII immunization, CII-specific B cells expanded rapidly in the spleen, in contrast to the lymph nodes, with the initial response derived from MZ B cells and later by follicular (FO) B cells. This was evident despite that the MZ B cells were subject to stringent tolerance mechanisms by having a greater Fc gamma receptor IIb expression than the FO B cells. Further, the MZ B cells migrated to the FO areas upon immunization, possibly providing antigen and activating FO T cells and subsequently FO B cells. Thus, around CIA onset increased numbers of IgG anti-CII producing FO B cells was seen in the spleen, which was dominated by IgG2a- and IgG2b-positive cells. These data demonstrate that CII-reactive MZ B cells are present before and expand after CII immunization, suggesting an initiating role of MZ B cells in the development of CIA.


Assuntos
Artrite Experimental/imunologia , Linfócitos B/imunologia , Colágeno Tipo II/imunologia , Animais , Feminino , Tolerância Imunológica/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Linfonodos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos NOD , Baço/imunologia
10.
Protein Sci ; 17(9): 1486-93, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18523102

RESUMO

Bacillus anthracis is well known in connection with biological warfare. The search for new drug targets and antibiotics is highly motivated because of upcoming multiresistant strains. Thymidylate kinase is an ideal target since this enzyme is at the junction of the de novo and salvage synthesis of dTTP, an essential precursor for DNA synthesis. Here the expression and characterization of thymidylate kinase from B. anthracis (Ba-TMPK) is presented. The enzyme phosphorylated deoxythymidine-5'-monophosphate (dTMP) efficiently with K (m) and V (max) values of 33 microM and 48 micromol mg(-1) min(-1), respectively. The efficiency of deoxyuridine-5'-monophosphate phosphorylation was approximately 10% of that of dTMP. Several dTMP analogs were tested, and D-FMAUMP (2'-fluoroarabinosyl-5-methyldeoxyuridine-5'-monophosphate) was selectively phosphorylated with an efficiency of 172% of that of D-dTMP, but L-FMAUMP was a poor substrate as were 5-fluorodeoxyuridine-5'-monophosphate (5FdUMP) and 2',3'-dideoxy-2',3'-didehydrothymidine-5'-monophosphate (d4TMP). No activity could be detected with 3'-azidothymidine-5'-monophosphate (AZTMP). The corresponding nucleosides known as efficient anticancer and antiviral compounds were also tested, and d-FMAU was a strong inhibitor with an IC(50) value of 10 microM, while other nucleosides--L-FMAU, dThd, 5-FdUrd, d4T, and AZT, and 2'-arabinosylthymidine--were poor inhibitors. A structure model was built for Ba-TMPK based on the Staphylococcus aureus TMPK structure. Docking with various substrates suggested mechanisms explaining the differences in substrate selectivity of the human and the bacterial TMPKs. These results may serve as a start point for development of new antibacterial agents.


Assuntos
Bacillus anthracis/enzimologia , Timidina Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Antivirais/farmacologia , Catálise , Biologia Computacional , Nucleotídeos de Desoxiadenina/metabolismo , Dimerização , Relação Dose-Resposta a Droga , Desenho de Fármacos , Histidina/metabolismo , Humanos , Concentração Inibidora 50 , Cinética , Modelos Moleculares , Peso Molecular , Fosforilação , Conformação Proteica , Nucleosídeos de Pirimidina/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidade por Substrato , Timidina Quinase/química , Timidina Quinase/genética , Timidina Monofosfato/análogos & derivados , Timidina Monofosfato/antagonistas & inibidores , Timidina Monofosfato/metabolismo
11.
Biol Chem ; 387(12): 1575-81, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17132103

RESUMO

Bacillus anthracis, which causes anthrax, has attracted attention because of its potential use as a biological weapon. The risk of multidrug resistance against B. anthracis increases the need for antibiotics with new molecular targets. Nucleoside analogs are well-known antiviral and anticancer prodrugs, and thymidine kinase catalyzes the rate-limiting step in the activation of pyrimidine nucleoside analogs used in chemotherapy. The thymidine kinase gene from B. anthracis Sterne strain (34F2) (Ba-TK) was cloned and expressed in E. coli, and the product was purified and characterized regarding its substrate specificity. Ba-TK phosphorylated pyrimidine nucleosides and all natural nucleoside triphosphates served as phosphate donors. Size exclusion chromatography indicated a dimeric form of Ba-TK, regardless of the presence of ATP. Thymidine was the most efficient substrate with a low K(m) value (0.6 microM) and a V(max) of 3.3 micromol dTMP mg(-1) min(-1), but deoxyuridine (K(m)=4.2 microM, V(max)=4.1 micromol dUMP mg(-1) min(-1)) was also a good substrate. Several pyrimidine analogs were also tested and analogs with 5-position modifications showed higher activities compared to analogs with 3'- and N3-position modifications. Deoxyuridine analogs were the most potent inhibitors of B. anthracis growth in vitro. These results may be used to guide future development of nucleoside analogs against B. anthracis.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/enzimologia , Nucleosídeos/farmacologia , Timidina Quinase/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Desenho de Fármacos , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Timidina Quinase/química , Timidina Quinase/genética
12.
Mol Microbiol ; 50(3): 771-80, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14617140

RESUMO

Ureaplasma urealyticum (U. urealyticum), belonging to the class Mollicutes, is a human pathogen colonizing the urogenital tract and causes among other things respiratory diseases in premature infants. We have studied the salvage of pyrimidine deoxynucleosides in U. urealyticum and cloned a key salvage enzyme, thymidine kinase (TK) from U. urealyticum. Recombinant Uu-TK was expressed in E. coli, purified and characterized with regards to substrate specificity and feedback inhibition. Uu-TK efficiently phosphorylated thymidine (dThd) and deoxyuridine (dUrd) as well as a number of pyrimidine nucleoside analogues. All natural ribonucleoside/deoxyribonucleoside triphosphates, except dTTP, served as phosphate donors, while dTTP was a feedback inhibitor. The level of Uu-TK activity in U. urealyticum extracts increased upon addition of dUrd to the growth medium. Fluoropyrimidine nucleosides inhibited U. urealyticum and M. pneumoniae growth and this inhibitory effect could be reversed by addition of dThd, dUrd or deoxytetrahydrouridine to the growth medium. Thus, the mechanism of inhibition was most likely the depletion of dTTP, either via a blocked thymidine kinase reaction and/or thymidylate synthesis step and these metabolic reactions should be suitable targets for antimycoplasma chemotherapy.


Assuntos
Mycoplasma pneumoniae/efeitos dos fármacos , Nucleosídeos/farmacologia , Tetra-Hidrouridina/análogos & derivados , Timidina Quinase/metabolismo , Ureaplasma urealyticum/enzimologia , Sequência de Aminoácidos , Divisão Celular/efeitos dos fármacos , Clonagem Molecular , Desoxiuridina/metabolismo , Desoxiuridina/farmacologia , Escherichia coli/genética , Retroalimentação Fisiológica , Dados de Sequência Molecular , Peso Molecular , Mycoplasma pneumoniae/crescimento & desenvolvimento , Nucleosídeos/metabolismo , Fosfatos/metabolismo , Nucleosídeos de Pirimidina/metabolismo , Nucleosídeos de Pirimidina/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Estavudina/metabolismo , Especificidade por Substrato , Tetra-Hidrouridina/farmacologia , Timidina/metabolismo , Timidina Quinase/genética , Nucleotídeos de Timina/metabolismo , Nucleotídeos de Timina/farmacologia , Ureaplasma urealyticum/efeitos dos fármacos , Ureaplasma urealyticum/genética , Zidovudina/metabolismo
13.
Proc Natl Acad Sci U S A ; 101(52): 17970-5, 2004 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-15611477

RESUMO

Cytosolic thymidine kinase 1, TK1, is a well known cell-cycle-regulated enzyme of importance in nucleotide metabolism as well as an activator of antiviral and anticancer drugs such as 3'-azido-3'-deoxythymidine (AZT). We have now determined the structures of the TK1 family, the human and Ureaplasma urealyticum enzymes, in complex with the feedback inhibitor dTTP. The TK1s have a tetrameric structure in which each subunit contains an alpha/beta-domain that is similar to ATPase domains of members of the RecA structural family and a domain containing a structural zinc. The zinc ion connects beta-structures at the root of a beta-ribbon that forms a stem that widens to a lasso-type loop. The thymidine of dTTP is hydrogen-bonded to main-chain atoms predominantly coming from the lasso loop. This binding is in contrast to other deoxyribonucleoside kinases where specific interactions occur with side chains. The TK1 structure differs fundamentally from the structures of the other deoxyribonucleoside kinases, indicating a different evolutionary origin.


Assuntos
Mycoplasma/enzimologia , Timidina Quinase/química , Sequência de Aminoácidos , Antimetabólitos/farmacologia , Sítios de Ligação , Cristalização , Desoxirribonucleosídeos/química , Evolução Molecular , Humanos , Ligação de Hidrogênio , Íons , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Nucleotídeos de Timina/química , Ureaplasma urealyticum/enzimologia , Zidovudina/farmacologia , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA