Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hepatol ; 79(4): 898-909, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37230231

RESUMO

BACKGROUND & AIMS: Roux-en-Y gastric bypass (RYGB), the most effective surgical procedure for weight loss, decreases obesity and ameliorates comorbidities, such as non-alcoholic fatty liver (NAFLD) and cardiovascular (CVD) diseases. Cholesterol is a major CVD risk factor and modulator of NAFLD development, and the liver tightly controls its metabolism. How RYGB surgery modulates systemic and hepatic cholesterol metabolism is still unclear. METHODS: We studied the hepatic transcriptome of 26 patients with obesity but not diabetes before and 1 year after undergoing RYGB. In parallel, we measured quantitative changes in plasma cholesterol metabolites and bile acids (BAs). RESULTS: RYGB surgery improved systemic cholesterol metabolism and increased plasma total and primary BA levels. Transcriptomic analysis revealed specific alterations in the liver after RYGB, with the downregulation of a module of genes implicated in inflammation and the upregulation of three modules, one associated with BA metabolism. A dedicated analysis of hepatic genes related to cholesterol homeostasis pointed towards increased biliary cholesterol elimination after RYGB, associated with enhancement of the alternate, but not the classical, BA synthesis pathway. In parallel, alterations in the expression of genes involved in cholesterol uptake and intracellular trafficking indicate improved hepatic free cholesterol handling. Finally, RYGB decreased plasma markers of cholesterol synthesis, which correlated with an improvement in liver disease status after surgery. CONCLUSIONS: Our results identify specific regulatory effects of RYGB on inflammation and cholesterol metabolism. RYGB alters the hepatic transcriptome signature, likely improving liver cholesterol homeostasis. These gene regulatory effects are reflected by systemic post-surgery changes of cholesterol-related metabolites, corroborating the beneficial effects of RYGB on both hepatic and systemic cholesterol homeostasis. IMPACT AND IMPLICATIONS: Roux-en-Y gastric bypass (RYGB) is a widely used bariatric surgery procedure with proven efficacy in body weight management, combatting cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). RYGB exerts many beneficial metabolic effects, by lowering plasma cholesterol and improving atherogenic dyslipidemia. Using a cohort of patients undergoing RYGB, studied before and 1 year after surgery, we analyzed how RYGB modulates hepatic and systemic cholesterol and bile acid metabolism. The results of our study provide important insights on the regulation of cholesterol homeostasis after RYGB and open avenues that could guide future monitoring and treatment strategies targeting CVD and NAFLD in obesity.


Assuntos
Derivação Gástrica , Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Humanos , Derivação Gástrica/métodos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/cirurgia , Transcriptoma , Obesidade/complicações , Colesterol , Homeostase , Inflamação/complicações , Obesidade Mórbida/complicações
2.
J Biol Chem ; 295(50): 17310-17322, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33037071

RESUMO

In addition to their well-known role in the control of cellular proliferation and cancer, cell cycle regulators are increasingly identified as important metabolic modulators. Several GWAS have identified SNPs near CDKN2A, the locus encoding for p16INK4a (p16), associated with elevated risk for cardiovascular diseases and type-2 diabetes development, two pathologies associated with impaired hepatic lipid metabolism. Although p16 was recently shown to control hepatic glucose homeostasis, it is unknown whether p16 also controls hepatic lipid metabolism. Using a combination of in vivo and in vitro approaches, we found that p16 modulates fasting-induced hepatic fatty acid oxidation (FAO) and lipid droplet accumulation. In primary hepatocytes, p16-deficiency was associated with elevated expression of genes involved in fatty acid catabolism. These transcriptional changes led to increased FAO and were associated with enhanced activation of PPARα through a mechanism requiring the catalytic AMPKα2 subunit and SIRT1, two known activators of PPARα. By contrast, p16 overexpression was associated with triglyceride accumulation and increased lipid droplet numbers in vitro, and decreased ketogenesis and hepatic mitochondrial activity in vivo Finally, gene expression analysis of liver samples from obese patients revealed a negative correlation between CDKN2A expression and PPARA and its target genes. Our findings demonstrate that p16 represses hepatic lipid catabolism during fasting and may thus participate in the preservation of metabolic flexibility.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , PPAR alfa/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Ácidos Graxos/genética , Estudo de Associação Genômica Ampla , Humanos , Gotículas Lipídicas/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Obesidade/genética , Obesidade/metabolismo , Oxirredução , PPAR alfa/genética , Sirtuína 1/genética
3.
Nucleic Acids Res ; 44(22): 10539-10553, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27576532

RESUMO

Adaptation to fasting involves both Glucocorticoid Receptor (GRα) and Peroxisome Proliferator-Activated Receptor α (PPARα) activation. Given both receptors can physically interact we investigated the possibility of a genome-wide cross-talk between activated GR and PPARα, using ChIP- and RNA-seq in primary hepatocytes. Our data reveal extensive chromatin co-localization of both factors with cooperative induction of genes controlling lipid/glucose metabolism. Key GR/PPAR co-controlled genes switched from transcriptional antagonism to cooperativity when moving from short to prolonged hepatocyte fasting, a phenomenon coinciding with gene promoter recruitment of phosphorylated AMP-activated protein kinase (AMPK) and blocked by its pharmacological inhibition. In vitro interaction studies support trimeric complex formation between GR, PPARα and phospho-AMPK. Long-term fasting in mice showed enhanced phosphorylation of liver AMPK and GRα Ser211. Phospho-AMPK chromatin recruitment at liver target genes, observed upon prolonged fasting in mice, is dampened by refeeding. Taken together, our results identify phospho-AMPK as a molecular switch able to cooperate with nuclear receptors at the chromatin level and reveal a novel adaptation mechanism to prolonged fasting.


Assuntos
Adenilato Quinase/metabolismo , Cromatina/metabolismo , PPAR alfa/fisiologia , Receptores de Glucocorticoides/fisiologia , Animais , Sequência de Bases , Sítios de Ligação , Células Cultivadas , Elementos Facilitadores Genéticos , Jejum , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , Análise de Sequência de DNA , Ativação Transcricional , Transcriptoma
4.
J Hepatol ; 63(1): 164-73, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25703085

RESUMO

BACKGROUND & AIMS: Peroxisome proliferator-activated receptors (PPARs) have been implicated in non-alcoholic steatohepatitis (NASH) pathogenesis, mainly based on animal data. Gene expression data in NASH patients are scarce. We studied liver PPARα, ß/δ, and γ expression in a large cohort of obese patients assessed for presence of NAFLD at baseline and 1 year follow-up. METHODS: Patients presented to the obesity clinic underwent a hepatic work-up. If NAFLD was suspected, liver biopsy was performed. Gene expression was studied by mRNA quantification. Patients were reassessed after 1 year. RESULTS: 125 patients were consecutively included in the study, of which 85 patients had paired liver biopsy taken at 1 year of follow-up. Liver PPARα expression negatively correlated with the presence of NASH (p=0.001) and with severity of steatosis (p=0.003), ballooning (p=0.001), NASH activity score (p=0.008) and fibrosis (p=0.003). PPARα expression was positively correlated to adiponectin (R(2)=0.345, p=0.010) and inversely correlated to visceral fat (R(2)=-0.343, p<0.001), HOMA IR (R(2)=-0.411, p<0.001) and CK18 (R(2)=-0.233, p=0.012). Liver PPARß/δ and PPARγ expression did not correlate with any histological feature nor with glucose metabolism or serum lipids. At 1 year, correlation of PPARα expression with liver histology was confirmed. In longitudinal analysis, an increase in expression of PPARα and its target genes was significantly associated with histological improvement (p=0.008). CONCLUSION: Human liver PPARα gene expression negatively correlates with NASH severity, visceral adiposity and insulin resistance and positively with adiponectin. Histological improvement is associated with an increase in expression of PPARα and its target genes. These data might suggest that PPARα is a potential therapeutic target in NASH.


Assuntos
Regulação da Expressão Gênica , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/genética , PPAR alfa/genética , RNA/genética , Adolescente , Adulto , Idoso , Biópsia , Feminino , Seguimentos , Humanos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , PPAR alfa/biossíntese , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
5.
Hepatology ; 59(1): 121-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24375485

RESUMO

UNLABELLED: An independent role of nonalcoholic fatty liver disease (NAFLD) in the development of cardiovascular disease has been suggested, probably mediated through increased levels of prothrombotic factors. Therefore, we examined whether NAFLD is linked to a prothrombotic state, independently of metabolic risk factors in a large single-center cohort of overweight/obese patients. Patients presenting to the obesity clinic underwent a detailed metabolic and liver assessment, including an extensive panel of coagulation factors. If NAFLD was suspected, a liver biopsy was proposed. A series of 273 consecutive patients (65% female) with a liver biopsy were included (age, 44 ± 0.76 years; body mass index: 39.6 ± 0.40 kg/m(2)). Increase in fibrinogen, factor VIII, and von Willebrand factor and decrease in antithrombin III correlated with metabolic features, but not with liver histology. Levels of plasminogen activator inhibitor-1 (PAI-1) increased significantly with increasing severity of steatosis (P < 0.001), lobular inflammation (P < 0.001), ballooning (P = 0.002), and fibrosis (P < 0.001). Patients with nonalcoholic steatohepatitis had significantly higher PAI-1 values than those with normal liver (P < 0.001). In multiple regression, including anthropometric and metabolic parameters, steatosis remained an independent predictor of PAI-1 levels, explaining, together with fasting C-peptide and waist circumference, 21% of the variance in PAI-1. No consistent correlations with histology were found for the other coagulation factors. CONCLUSION: In obesity, NAFLD severity independently contributes to the increase in PAI-1 levels, whereas other coagulation factors are unaltered. This finding might, in part, explain the increased cardiovascular risk associated with NAFLD.


Assuntos
Fígado Gorduroso/complicações , Obesidade/complicações , Inibidor 1 de Ativador de Plasminogênio/sangue , Trombose/etiologia , Adulto , Antropometria , Coagulação Sanguínea , Fígado Gorduroso/sangue , Fígado Gorduroso/patologia , Feminino , Expressão Gênica , Humanos , Fígado/patologia , Testes de Função Hepática , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/complicações , Pessoa de Meia-Idade , Estudos Prospectivos , Análise de Regressão , Estatísticas não Paramétricas
6.
Hepatology ; 59(5): 2022-33, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24037988

RESUMO

UNLABELLED: Bile acid metabolism is intimately linked to the control of energy homeostasis and glucose and lipid metabolism. The nuclear receptor farnesoid X receptor (FXR) plays a major role in the enterohepatic cycling of bile acids, but the impact of nutrients on bile acid homeostasis is poorly characterized. Metabolically active hepatocytes cope with increases in intracellular glucose concentrations by directing glucose into storage (glycogen) or oxidation (glycolysis) pathways, as well as to the pentose phosphate shunt and the hexosamine biosynthetic pathway. Here we studied whether the glucose nonoxidative hexosamine biosynthetic pathway modulates FXR activity. Our results show that FXR interacts with and is O-GlcNAcylated by O-GlcNAc transferase in its N-terminal AF1 domain. Increased FXR O-GlcNAcylation enhances FXR gene expression and protein stability in a cell type-specific manner. High glucose concentrations increased FXR O-GlcNAcylation, hence its protein stability and transcriptional activity by inactivating corepressor complexes, which associate in a ligand-dependent manner with FXR, and increased FXR binding to chromatin. Finally, in vivo fasting-refeeding experiments show that FXR undergoes O-GlcNAcylation in fed conditions associated with increased direct FXR target gene expression and decreased liver bile acid content. CONCLUSION: FXR activity is regulated by glucose fluxes in hepatocytes through a direct posttranslational modification catalyzed by the glucose-sensing hexosamine biosynthetic pathway.


Assuntos
Ácidos e Sais Biliares/metabolismo , Glucose/metabolismo , N-Acetilglucosaminiltransferases/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Acilação , Animais , Regulação da Expressão Gênica , Células Hep G2 , Hepatócitos/metabolismo , Hexosaminas/biossíntese , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Via de Pentose Fosfato , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais
7.
Transgenic Res ; 24(5): 803-12, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26091792

RESUMO

Conditional gene knockout technology is a powerful tool to study the function of a gene in a specific tissue, organ or cell lineage. The most commonly used procedure applies the Cre-LoxP strategy, where the choice of the Cre driver promoter is critical to determine the efficiency and specificity of the system. However, a considered choice of an appropriate promoter does not always protect against the risk of unwanted recombination and the consequent deletion of the gene in other tissues than the desired one(s), due to phenomena of non-specific activation of the Cre transgene. Furthermore, the causes of these phenomena are not completely understood and this can potentially affect every strain of Cre-mice. In our study on the deletion of a same gene in two different tissues, we show that the incidence rate of non-specific recombination in unwanted tissues depends on the Cre driver strain, ranging from 100%, rendering it useless (aP2-Cre strain), to ~5%, which is still compatible with their use (RIP-Cre strain). The use of a simple PCR strategy conceived to detect this occurrence is indispensable when producing a tissue-specific knockout mouse. Therefore, when choosing the Cre-driver promoter, researchers not only have to be careful about its tissue-specificity and timing of activation, but should also include a systematical screening in order to exclude mice in which atypical recombination has occurred and to limit the unnecessary use of laboratory animals in uninterpretable experiments.


Assuntos
Integrases/genética , Recombinação Genética , Alelos , Animais , Células Germinativas , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase
8.
Diabetologia ; 57(4): 785-96, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24463962

RESUMO

AIMS/HYPOTHESIS: Gene polymorphisms of TCF7L2 are associated with increased risk of type 2 diabetes and transcription factor 7-like 2 (TCF7L2) plays a role in hepatic glucose metabolism. We therefore addressed the impact of TCF7L2 isoforms on hepatocyte nuclear factor 4α (HNF4α) and the regulation of gluconeogenesis genes. METHODS: Liver TCF7L2 transcripts were analysed by quantitative PCR in 33 non-diabetic and 31 type 2 diabetic obese individuals genotyped for TCF7L2 rs7903146. To analyse transcriptional regulation by TCF7L2, small interfering RNA transfection, luciferase reporter and co-immunoprecipitation assays were performed in human hepatoma HepG2 cells. RESULTS: In livers of diabetic compared with normoglycaemic individuals, five C-terminal TCF7L2 transcripts showed increased expression. The type 2 diabetes risk allele of rs7903146 positively correlated with TCF7L2 expression in livers from normoglycaemic individuals only. In HepG2 cells, transcript and TCF7L2 protein levels were increased upon incubation in high glucose and insulin. Of the exon 13 transcripts, six were increased in a glucose dose-responsive manner. TCF7L2 transcriptionally regulated 29 genes related to glucose metabolism, including glucose-6-phosphatase. In cultured HepG2 cells, TCF7L2 did not regulate HNF4Α and FOXO1 transcription, but did affect HNF4α protein expression. The TCF7L2 isoforms T6 and T8 (without exon 13 and with exon 15/14, respectively) specifically interacted with HNF4α. CONCLUSIONS/INTERPRETATION: The different levels of expression of alternative C-terminal TCF7L2 transcripts in HepG2 cells, in livers of normoglycaemic individuals carrying the rs7901346 type 2 diabetes risk allele and in livers of diabetic individuals suggest that these transcripts play a role in the pathophysiology of type 2 diabetes. We also report for the first time a protein interaction in HepG2 cells between HNF4α and the T6 and T8 isoforms of TCF7L2, which suggests a distinct role for these specific alternative transcripts.


Assuntos
Gluconeogênese/fisiologia , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Adulto , Western Blotting , Feminino , Gluconeogênese/genética , Células Hep G2 , Fator 4 Nuclear de Hepatócito/genética , Humanos , Imunoprecipitação , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética
9.
Mol Metab ; 69: 101686, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36746333

RESUMO

OBJECTIVE: Obesity is associated with metabolic dysfunction of white adipose tissue (WAT). Activated adipocytes secrete pro-inflammatory cytokines resulting in the recruitment of pro-inflammatory macrophages, which contribute to WAT insulin resistance. The bile acid (BA)-activated nuclear Farnesoid X Receptor (FXR) controls systemic glucose and lipid metabolism. Here, we studied the role of FXR in adipose tissue function. METHODS: We first investigated the immune phenotype of epididymal WAT (eWAT) from high fat diet (HFD)-fed whole-body FXR-deficient (FXR-/-) mice by flow cytometry and gene expression analysis. We then generated adipocyte-specific FXR-deficient (Ad-FXR-/-) mice and analyzed systemic and eWAT metabolism and immune phenotype upon HFD feeding. Transcriptomic analysis was done on mature eWAT adipocytes from HFD-fed Ad-FXR-/- mice. RESULTS: eWAT from HFD-fed whole-body FXR-/- and Ad-FXR-/- mice displayed decreased pro-inflammatory macrophage infiltration and inflammation. Ad-FXR-/- mice showed lower blood glucose concentrations, improved systemic glucose tolerance and WAT insulin sensitivity and oxidative stress. Transcriptomic analysis identified Gsta4, a modulator of oxidative stress in WAT, as the most upregulated gene in Ad-FXR-/- mouse adipocytes. Finally, chromatin immunoprecipitation analysis showed that FXR binds the Gsta4 gene promoter. CONCLUSIONS: These results indicate a role for the adipocyte FXR-GSTA4 axis in controlling HFD-induced inflammation and systemic glucose homeostasis.


Assuntos
Resistência à Insulina , Animais , Camundongos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Glucose/metabolismo , Homeostase , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Estresse Oxidativo , Receptores Citoplasmáticos e Nucleares/metabolismo
10.
Am J Physiol Endocrinol Metab ; 302(9): E1063-9, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22338072

RESUMO

Liver fat is increased in carriers of the minor G allele in rs738409 (I148M amino acid substitution) in patatin-like phospholipase domain-containing 3 (PNPLA3)/adiponutrin. We studied transcriptional regulation of PNPLA3 in immortalized human hepatocytes (IHH) and human hepatoma cells (HuH7) and the impact of PNPLA3 I148M mutant on hepatocyte triglyceride metabolism. Studies in IHH showed that silencing of the carbohydrate response element-binding protein (ChREBP) abolished induction of PNPLA3 mRNA by glucose. Glucose-dependent binding of ChREBP to a newly identified carbohydrate response element in the PNPLA3 promoter was demonstrated by chromatin immunoprecipitation. Adenoviral overexpression of mouse ChREBP in IHH failed to induce PNPLA3 mRNA. [(3)H]acetate or [(3)H]oleate incorporation with 1-h pulse labeling or 18-h [(3)H]oleate labeling in HuH7 cells showed no effect of PNPLA3 I148M on triglyceride (TG) synthesis in the absence of free fatty acid (FFA) loading. Increased [(3)H]oleate accumulation into triglycerides in I148M-expressing cells was observed after 18 h of labeling in the presence of 200 µM FFA-albumin complexes. This was accompanied by increased PNPLA3 protein levels. The rate of hydrolysis of [(3)H]TG during lipid depletion was decreased significantly by PNPLA3 I148M. Our results suggest that PNPLA3 is regulated in human hepatocytes by glucose via ChREBP. PNPLA3 I148M enhances cellular accumulation of [(3)H]TG in the presence of excess FFA, which is known to stabilize PNPLA3 protein. These data do not exclude an effect of PNPLA3 I148M on hepatocyte lipogenesis but show that the mutant increases the stability of triglycerides.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Glucose/fisiologia , Hepatócitos/metabolismo , Lipase/metabolismo , Proteínas de Membrana/metabolismo , Triglicerídeos/metabolismo , Substituição de Aminoácidos , Linhagem Celular , Humanos , Lipogênese/fisiologia , Mutação , Estatísticas não Paramétricas , Transcrição Gênica/fisiologia
11.
Cytokine ; 59(2): 442-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22658783

RESUMO

The liver is a major target of injury in obese patients. Non-alcoholic fatty liver disease (NAFLD) is present in 60-90% of obese Americans and can range from simple steatosis to the more severe non-alcoholic steatohepatitis (NASH). The onset of a chronic inflammatory reaction marks the progression from simple steatosis to NASH and the expansion of adipose tissue is strongly associated with angiogenesis. Therefore, we determined the serum concentration of inflammatory [tumor necrosis factor alpha (TNFα) and interleukin 6 (IL6)] and angiogenic [vascular endothelial growth factor A (VEGF)] cytokines and soluble VEGF receptors 1 and 2 (sVEGFR1, sVEGFR2) in the serum of an obese population with simple steatosis and NASH compared to healthy controls. Moreover, we determined the TNFα, IL6, VEGF, VEGFR1 and VEGFR2 gene expression in the liver of these simple steatosis and NASH patients. The population consisted of 30 obese patients, which were diagnosed with simple steatosis and 32 patients with NASH and compared to 30 age-and-sex matched healthy controls. Mean serum TNFα levels were elevated in the serum of simple steatosis and NASH patients compared to healthy controls, reaching significance in NASH patients. IL6 was significantly increased in simple steatosis and NASH patients compared to the healthy controls. VEGF levels were significantly elevated in patients with simple steatosis and borderline significantly elevated in NASH patients compared to the serum levels of healthy control subjects. The concentration of sVEGFR1 was significantly increased in serum of simple steatosis and NASH patients compared to controls. sVEGFR2 concentration was not significantly different in the three groups. TNFα mRNA expression was higher in NASH patients compared to simple steatosis patients. Hepatic gene expression of VEGF, VEGFR1 and VEGFR2 were slightly decreased in NASH patients compared to simple steatosis patients. These data indicate the involvement of inflammatory (TNFα and IL6), angiogenic (VEGF) cytokines and sVEGFR1 in the pathophysiology of NAFLD.


Assuntos
Indutores da Angiogênese/sangue , Indutores da Angiogênese/metabolismo , Fígado Gorduroso/sangue , Fígado Gorduroso/genética , Inflamação/sangue , Inflamação/genética , Adulto , Biópsia , Estudos de Casos e Controles , Fígado Gorduroso/patologia , Feminino , Regulação da Expressão Gênica , Saúde , Humanos , Inflamação/patologia , Interleucina-6/sangue , Modelos Lineares , Fígado/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica , Fator de Necrose Tumoral alfa/sangue , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/sangue , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem
12.
Arterioscler Thromb Vasc Biol ; 31(7): 1573-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21474829

RESUMO

OBJECTIVE: Peroxisome proliferator-activated receptor-α (PPARα) is a ligand-activated transcription factor that controls lipid metabolism and inflammation. PPARα is activated by fibrates, hypolipidemic drugs used in the treatment of dyslipidemia. Previous studies assessing the influence of PPARα agonists on atherosclerosis in mice yielded conflicting results, and the implication of PPARα therein has not been assessed. The human apolipoprotein E2 knock-in (apoE2-KI) mouse is a model of mixed dyslipidemia, atherosclerosis, and nonalcoholic steatohepatitis (NASH). The aim of this study was to analyze, using homo- and heterozygous PPARα-deficient mice, the consequences of quantitative variations of PPARα gene levels and their response to the synthetic PPARα agonist fenofibrate on NASH and atherosclerosis in apoE2-KI mice. METHODS AND RESULTS: Wild-type (+/+), heterozygous (+/-), and homozygous (-/-) PPARα-deficient mice in the apoE2-KI background were generated and subjected to a Western diet supplemented with fenofibrate or not supplemented. Western diet-fed PPARα-/- apoE2-KI mice displayed an aggravation of liver steatosis and inflammation compared with PPARα+/+ and PPARα+/- apoE2-KI mice, indicating a role of PPARα in liver protection. Moreover, PPARα expression was required for the fenofibrate-induced protection against NASH. Interestingly, fenofibrate treatment induced a similar response on hepatic lipid metabolism in PPARα+/+ and PPARα+/- apoE2-KI mice, whereas, for a maximal antiinflammatory response, both alleles of the PPARα gene were required. Surprisingly, atherosclerosis development was not significantly different among PPARα+/+, PPARα+/-, and PPARα-/- apoE2-KI mice. However, PPARα gene level determined both the antiatherosclerotic and vascular antiinflammatory responses to fenofibrate in a dose-dependent manner. CONCLUSIONS: These results demonstrate a necessary but quantitatively different role of PPARα in the modulation of liver metabolism, inflammation, and atherogenesis.


Assuntos
Aorta/metabolismo , Apolipoproteína E2/metabolismo , Aterosclerose/metabolismo , Inflamação/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , PPAR alfa/metabolismo , Análise de Variância , Animais , Anti-Inflamatórios/farmacologia , Aorta/efeitos dos fármacos , Aorta/patologia , Apolipoproteína E2/genética , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/patologia , Modelos Animais de Doenças , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Fenofibrato/farmacologia , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Heterozigoto , Homozigoto , Humanos , Hipolipemiantes/farmacologia , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica , PPAR alfa/agonistas , PPAR alfa/genética
13.
Arterioscler Thromb Vasc Biol ; 31(3): 513-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21183731

RESUMO

OBJECTIVE: Hypertriglyceridemia and fatty liver are common in patients with type 2 diabetes, but the factors connecting alterations in glucose metabolism with plasma and liver lipid metabolism remain unclear. Apolipoprotein CIII (apoCIII), a regulator of hepatic and plasma triglyceride metabolism, is elevated in type 2 diabetes. In this study, we analyzed whether apoCIII is affected by altered glucose metabolism. METHODS AND RESULTS: Liver-specific insulin receptor-deficient mice display lower hepatic apoCIII mRNA levels than controls, suggesting that factors other than insulin regulate apoCIII in vivo. Glucose induces apoCIII transcription in primary rat hepatocytes and immortalized human hepatocytes via a mechanism involving the transcription factors carbohydrate response element-binding protein and hepatocyte nuclear factor-4α. ApoCIII induction by glucose is blunted by treatment with agonists of farnesoid X receptor and peroxisome proliferator-activated receptor-α but not liver X receptor, ie, nuclear receptors controlling triglyceride metabolism. Moreover, in obese humans, plasma apoCIII protein correlates more closely with plasma fasting glucose and glucose excursion after oral glucose load than with insulin. CONCLUSIONS: Glucose induces apoCIII transcription, which may represent a mechanism linking hyperglycemia, hypertriglyceridemia, and cardiovascular disease in type 2 diabetes.


Assuntos
Apolipoproteína C-III/genética , Complicações do Diabetes/etiologia , Diabetes Mellitus Tipo 2/complicações , Dislipidemias/etiologia , Glucose/metabolismo , Hepatócitos/metabolismo , Ativação Transcricional , Adulto , Animais , Apolipoproteína C-III/sangue , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Glicemia/metabolismo , Células Cultivadas , Complicações do Diabetes/genética , Complicações do Diabetes/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/genética , Dislipidemias/metabolismo , Proteínas de Choque Térmico/agonistas , Proteínas de Choque Térmico/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Insulina/sangue , Receptores X do Fígado , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/sangue , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Regiões Promotoras Genéticas , Interferência de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/agonistas , Proteínas de Ligação a RNA/metabolismo , Ratos , Receptor de Insulina/deficiência , Receptor de Insulina/genética , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Tempo , Fatores de Transcrição/agonistas , Fatores de Transcrição/metabolismo , Transfecção , Regulação para Cima
14.
Proc Natl Acad Sci U S A ; 106(18): 7397-402, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19376972

RESUMO

Glucocorticoid receptor alpha (GRalpha) and peroxisome proliferator-activated receptor alpha (PPARalpha) are transcription factors with clinically important immune-modulating properties. Either receptor can inhibit cytokine gene expression, mainly through interference with nuclear factor kappaB (NF-kappaB)-driven gene expression. The present work aimed to investigate a functional cross-talk between PPARalpha- and GRalpha-mediated signaling pathways. Simultaneous activation of PPARalpha and GRalpha dose-dependently enhances transrepression of NF-kappaB-driven gene expression and additively represses cytokine production. In sharp contrast and quite unexpectedly, PPARalpha agonists inhibit the expression of classical glucocorticoid response element (GRE)-driven genes in a PPARalpha-dependent manner, as demonstrated by experiments using PPARalpha wild-type and knockout mice. The underlying mechanism for this transcriptional antagonism relies on a PPARalpha-mediated interference with the recruitment of GRalpha, and concomitantly of RNA polymerase II, to GRE-driven gene promoters. Finally, the biological relevance of this phenomenon is underscored by the observation that treatment with the PPARalpha agonist fenofibrate prevents glucocorticoid-induced hyperinsulinemia of mice fed a high-fat diet. Taken together, PPARalpha negatively interferes with GRE-mediated GRalpha activity while potentiating its antiinflammatory effects, thus providing a rationale for combination therapy in chronic inflammatory disorders.


Assuntos
Glucocorticoides/farmacologia , NF-kappa B/metabolismo , PPAR alfa/metabolismo , Receptores de Glucocorticoides/metabolismo , Ativação Transcricional , Animais , Linhagem Celular Tumoral , Gorduras na Dieta/administração & dosagem , Fenofibrato/farmacologia , Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hiperinsulinismo/induzido quimicamente , Hiperinsulinismo/prevenção & controle , Camundongos , Camundongos Knockout , PPAR alfa/agonistas , PPAR alfa/antagonistas & inibidores , PPAR alfa/genética , Regiões Promotoras Genéticas , Receptores de Glucocorticoides/agonistas
15.
J Biol Chem ; 285(47): 36759-67, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20851881

RESUMO

The bile acid receptor farnesoid X receptor (FXR) is expressed in adipose tissue, but its function remains poorly defined. Peroxisome proliferator-activated receptor-γ (PPARγ) is a master regulator of adipocyte differentiation and function. The aim of this study was to analyze the role of FXR in adipocyte function and to assess whether it modulates PPARγ action. Therefore, we tested the responsiveness of FXR-deficient mice (FXR(-/-)) and cells to the PPARγ activator rosiglitazone. Our results show that genetically obese FXR(-/-)/ob/ob mice displayed a resistance to rosiglitazone treatment. In vitro, rosiglitazone treatment did not induce normal adipocyte differentiation and lipid droplet formation in FXR(-/-) mouse embryonic fibroblasts (MEFs) and preadipocytes. Moreover, FXR(-/-) MEFs displayed both an increased lipolysis and a decreased de novo lipogenesis, resulting in reduced intracellular triglyceride content, even upon PPARγ activation. Retroviral-mediated FXR re-expression in FXR(-/-) MEFs restored the induction of adipogenic marker genes during rosiglitazone-forced adipocyte differentiation. The expression of Wnt/ß-catenin pathway and target genes was increased in FXR(-/-) adipose tissue and MEFs. Moreover, the expression of several endogenous inhibitors of this pathway was decreased early during the adipocyte differentiation of FXR(-/-) MEFs. These findings demonstrate that FXR regulates adipocyte differentiation and function by regulating two counteracting pathways of adipocyte differentiation, the PPARγ and Wnt/ß-catenin pathways.


Assuntos
Adipócitos/citologia , Diferenciação Celular , PPAR gama/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Biomarcadores/metabolismo , Western Blotting , Células Cultivadas , Resistência a Medicamentos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proteína-1 Reguladora de Fusão , Perfilação da Expressão Gênica , Humanos , Hipoglicemiantes/farmacologia , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Análise de Sequência com Séries de Oligonucleotídeos , PPAR gama/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rosiglitazona , Transdução de Sinais , Tiazolidinedionas/farmacologia , Proteínas Wnt/genética , beta Catenina/genética
16.
Curr Diab Rep ; 11(3): 160-6, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21431855

RESUMO

Type 2 diabetes (T2D) is a growing health problem worldwide, but the currently available strategies for therapy and prevention are insufficient. Recent observations indicate that bile acid homeostasis is altered in T2D. Bile acids are metabolic regulators that act as signaling molecules through receptor-dependent and -independent pathways. The most prominent signaling molecules mediating bile acid signaling are the nuclear receptor farnesoid X receptor (FXR) and the membrane receptor TGR5. Both are implicated in the regulation of lipid, glucose, and energy metabolism. Dysregulation of these pathways might contribute to the development of T2D and associated complications. Interestingly, data from studies with bile acids or bile acid sequestrants indicate that the manipulation of bile acid homeostasis might be an attractive approach for T2D therapy. In this review, we summarize the mechanisms of bile acid-mediated metabolic control that might be relevant in the pathogenesis of T2D.


Assuntos
Ácidos e Sais Biliares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Animais , Dislipidemias/metabolismo , Dislipidemias/fisiopatologia , Humanos , Obesidade/metabolismo , Obesidade/fisiopatologia
17.
Sci Rep ; 10(1): 174, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932631

RESUMO

The gut microbiota participates in the control of energy homeostasis partly through fermentation of dietary fibers hence producing short-chain fatty acids (SCFAs), which in turn promote the secretion of the incretin Glucagon-Like Peptide-1 (GLP-1) by binding to the SCFA receptors FFAR2 and FFAR3 on enteroendocrine L-cells. We have previously shown that activation of the nuclear Farnesoid X Receptor (FXR) decreases the L-cell response to glucose. Here, we investigated whether FXR also regulates the SCFA-induced GLP-1 secretion. GLP-1 secretion in response to SCFAs was evaluated ex vivo in murine colonic biopsies and in colonoids of wild-type (WT) and FXR knock-out (KO) mice, in vitro in GLUTag and NCI-H716 L-cells activated with the synthetic FXR agonist GW4064 and in vivo in WT and FXR KO mice after prebiotic supplementation. SCFA-induced GLP-1 secretion was blunted in colonic biopsies from GW4064-treated mice and enhanced in FXR KO colonoids. In vitro FXR activation inhibited GLP-1 secretion in response to SCFAs and FFAR2 synthetic ligands, mainly by decreasing FFAR2 expression and downstream Gαq-signaling. FXR KO mice displayed elevated colonic FFAR2 mRNA levels and increased plasma GLP-1 levels upon local supply of SCFAs with prebiotic supplementation. Our results demonstrate that FXR activation decreases L-cell GLP-1 secretion in response to inulin-derived SCFA by reducing FFAR2 expression and signaling. Inactivation of intestinal FXR using bile acid sequestrants or synthetic antagonists in combination with prebiotic supplementation may be a promising therapeutic approach to boost the incretin axis in type 2 diabetes.


Assuntos
Colo/metabolismo , Ácidos Graxos Voláteis/farmacologia , Peptídeo 1 Semelhante ao Glucagon/antagonistas & inibidores , Microbiota , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Colo/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
19.
FEBS Lett ; 582(6): 949-55, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-18298956

RESUMO

The purpose of this study was to determine whether bile acids (BAs) modulate hepatic pro-protein convertase subtilisin/kexin 9 (PCSK9) gene expression. Immortalized human hepatocytes were treated with various BAs. Chenodeoxycholic acid (CDCA) treatment specifically decreased both PCSK9 mRNA and protein contents. Moreover, activation of the BA-activated farnesoid X receptor (FXR) by its synthetic specific agonist GW4064 also decreased PCSK9 expression. Of functional relevance, coadministration of CDCA counteracted the statin-induced PCSK9 expression, leading to a potentiation of LDL receptor activity. This study suggests that a transcriptional repression of PCSK9 by CDCA or FXR agonists may potentiate the hypolipidemic effect of statins.


Assuntos
Ácido Quenodesoxicólico/farmacologia , Proteínas de Ligação a DNA/agonistas , Hepatócitos/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Serina Endopeptidases/genética , Fatores de Transcrição/agonistas , Transcrição Gênica/efeitos dos fármacos , Hepatócitos/enzimologia , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Isoxazóis/farmacologia , Pravastatina/farmacologia , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , Receptores de LDL/agonistas , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo
20.
Biochem J ; 407(3): 461-9, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17655523

RESUMO

FXR (farnesoid X receptor), a nuclear receptor activated by BAs (bile acids), is a key factor in the regulation of BA, lipid and carbohydrate metabolism. The recent development of synthetic FXR agonists and knockout mouse models has accelerated the discovery of FXR target genes. In the present study, we identify human fetuin-B as a novel FXR target gene. Treatment with FXR agonists increased fetuin-B expression in human primary hepatocytes and in the human hepatoma HepG2 cell line. In contrast, fetuin-B expression was not responsive to FXR agonist treatment in murine primary hepatocytes. Fetuin-B induction by FXR agonist was abolished upon FXR knockdown by siRNA (small interfering RNA). In addition to the previously described P1 promoter, we show that the human fetuin-B gene is also transcribed from an alternative promoter, termed P2. Transcription via the P2 promoter was induced by FXR agonist treatment, whereas P1 promoter activity was not sensitive to FXR agonist treatment. Two putative FXR-response elements [IR-1 (inverted repeat-1)] were identified in the region -1.6 kb upstream of the predicted P2 transcriptional start site. Both motifs bound FXR-RXR (retinoid X receptor) complexes in vitro and were activated by FXR in transient transfection reporter assays. Mutations in the IR-1 sites abolished FXR-RXR binding and activation. Taken together, these results identify human fetuin-B as a new FXR target gene in human hepatocytes.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Hepatócitos/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Regulação para Cima/fisiologia , alfa-Fetoproteínas/biossíntese , alfa-Fetoproteínas/genética , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/agonistas , Fetuína-B , Perfilação da Expressão Gênica , Humanos , Camundongos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares/agonistas , Fatores de Transcrição/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA