Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 388(2): 506-517, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37442618

RESUMO

The ocular surface comprises the wet mucosal epithelia of the cornea and conjunctiva, the associated glands, and the overlying tear film. Epitheliopathy is the common pathologic outcome when the ocular surface is subjected to oxidative stress. Whether different stresses act via the same or different mechanisms is not known. Dynasore and dyngo-4a, small molecules developed to inhibit the GTPase activity of classic dynamins DNM1, DNM2, and DNM3, but not mdivi-1, a specific inhibitor of DNM1L, protect corneal epithelial cells exposed to the oxidant tert-butyl hydroperoxide (tBHP). Here we report that, while dyngo-4a is the more potent inhibitor of endocytosis, dynasore is the better cytoprotectant. Dynasore also protects corneal epithelial cells against exposure to high salt in an in vitro model of dysfunctional tears in dry eye. We now validate this finding in vivo, demonstrating that dynasore protects against epitheliopathy in a mouse model of dry eye. Knockdown of classic dynamin DNM2 was also cytoprotective against tBHP exposure, suggesting that dynasore's effect is at least partially on target. Like tBHP and high salt, exposure of corneal epithelial cells to nitrogen mustard upregulated the unfolded protein response and inflammatory markers, but dynasore did not protect against nitrogen mustard exposure. In contrast, mdivi-1 was cytoprotective. Interestingly, mdivi-1 did not inhibit the nitrogen mustard-induced expression of inflammatory cytokines. We conclude that exposure to tBHP or nitrogen mustard, two different oxidative stress agents, cause corneal epitheliopathy via different pathologic pathways. SIGNIFICANCE STATEMENT: Results presented in this paper, for the first time, implicate the dynamin DNM2 in ocular surface epitheliopathy. The findings suggest that dynasore could serve as a new topical treatment for dry eye epitheliopathy and that mdivi-1 could serve as a medical countermeasure for epitheliopathy due to nitrogen mustard exposure, with potentially increased efficacy when combined with anti-inflammatory agents and/or UPR modulators.


Assuntos
Síndromes do Olho Seco , Hidrazonas , Mecloretamina , Naftóis , Quinazolinonas , Camundongos , Animais , Mecloretamina/toxicidade , Mecloretamina/metabolismo , Síndromes do Olho Seco/induzido quimicamente , Síndromes do Olho Seco/tratamento farmacológico , Córnea , Lágrimas , Dinaminas
2.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902183

RESUMO

Epitheliopathy at the ocular surface is a defining sign of dry eye disease, a common disorder that affects 10% to 30% of the world's population. Hyperosmolarity of the tear film is one of the main drivers of pathology, with subsequent endoplasmic reticulum (ER) stress, the resulting unfolded protein response (UPR), and caspase-3 activation implicated in the pathway to programmed cell death. Dynasore, is a small molecule inhibitor of dynamin GTPases that has shown therapeutic effects in a variety of disease models involving oxidative stress. Recently we showed that dynasore protects corneal epithelial cells exposed to the oxidant tBHP, by selective reduction in expression of CHOP, a marker of the UPR PERK branch. Here we investigated the capacity of dynasore to protect corneal epithelial cells subjected to hyperosmotic stress (HOS). Similar to dynasore's capacity to protect against tBHP exposure, dynasore inhibits the cell death pathway triggered by HOS, protecting against ER stress and maintaining a homeostatic level of UPR activity. However, unlike with tBHP exposure, UPR activation due to HOS is independent of PERK and mostly driven by the UPR IRE1 branch. Our results demonstrate the role of the UPR in HOS-driven damage, and the potential of dynasore as a treatment to prevent dry eye epitheliopathy.


Assuntos
Síndromes do Olho Seco , Células Epiteliais , Humanos , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/prevenção & controle , eIF-2 Quinase/metabolismo , Estresse do Retículo Endoplasmático , Células Epiteliais/metabolismo , Resposta a Proteínas não Dobradas
3.
Mol Ecol ; 27(18): 3599-3612, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30074659

RESUMO

Allee effects reduce the viability of small populations in many different ways, which act synergistically to lead populations towards extinction vortexes. The Sierra Morena wolf population, isolated in the south of the Iberian Peninsula and composed of just one or few packs for decades, represents a good example of how diverse threats act additively in very small populations. We sequenced the genome of one of the last wolves identified (and road-killed) in Sierra Morena and that of another wolf in the Iberian Wolf Captive Breeding Program and compared them with other wolf and dog genomes from around the world (including two previously published genome sequences from northern Iberian wolves). The results showed relatively low overall genetic diversity in Iberian wolves, but diverse population histories including past introgression of dog genes. The Sierra Morena wolf had an extraordinarily high level of inbreeding and long runs of homozygosity, resulting from the long isolation. In addition, about one-third of the genome was of dog origin. Despite the introgression of dog genes, heterozygosity remained low because of continued inbreeding after several hybridization events. The results thus illustrate the case of a small and isolated wolf population where the low population density may have favoured hybridization and introgression of dog alleles, but continued inbreeding may have resulted in large chromosomal fragments of wolf origin completely disappearing from the population, and being replaced by chromosomal fragments of dog origin. The latest population surveys suggest that this population may have gone extinct.


Assuntos
Genética Populacional , Endogamia , Lobos/genética , Alelos , Animais , Mapeamento Cromossômico , Conservação dos Recursos Naturais , Cães , Heterozigoto , Hibridização Genética , Polimorfismo de Nucleotídeo Único , Densidade Demográfica , Espanha , Sequenciamento Completo do Genoma
4.
Exp Eye Res ; 154: 64-69, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27818317

RESUMO

Dry eye disease is one of the most frequent pathological events that take place in the course of the graft versus host disease (GVHD), and is the main cause of deterioration in quality of life for patients. Thus, demonstration of dry eye signs in murine models of oGVHD is crucial for the validation of these models for the study of the disease. Given the increasing evidence that tear osmolarity is an important player of dry eye disease, our purpose in this study was to validate the use of a reliable method to assess tear osmolarity in mice: the electrical impedance method. Then, we wanted to test its utility with an oGVHD model. Tear volume assessment was also performed, using the phenol red thread test. We found differences in tear osmolarity in mice that received a transplant with cells from bone marrow and spleen (the GVHD group) when compared with mice that only received bone marrow cells (the BM group) at day 7 (362 ± 8 mOsm/l and 345 ± 9 mOsm/l respectively; P < 0.01) and day 21 (348 ± 19 mOsm/l vs. 326 ± 15 mOsm/l; P < 0.05). We found also differences in tear volume at day 14 (2.30 ± 0.61 mm in oGVHD group and 2.89 ± 0.62 mm in BM group; P = 0.06) and at day 21 (2.10 ± 0.30 mm in oGVHD group and 2.89 ± 0.32 mm in BM group; P < 0.01). Besides this, we observed reduction in epithelial thickness between the GVHD and BM groups (37.0 ± 6.2 µm and 43.6 ± 3.3 µm respectively; P < 0.05). These data show the usefulness of the electrical impedance method to measure tear osmolarity in mice. We can also conclude that this oGVHD model mimics the tear film alterations found in human dry eye disease, what contributes to give relevance to this model for the study of GVHD.


Assuntos
Síndromes do Olho Seco/diagnóstico , Epitélio Corneano/metabolismo , Doença Enxerto-Hospedeiro/diagnóstico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Lágrimas/metabolismo , Animais , Modelos Animais de Doenças , Síndromes do Olho Seco/etiologia , Síndromes do Olho Seco/metabolismo , Epitélio Corneano/patologia , Doença Enxerto-Hospedeiro/complicações , Doença Enxerto-Hospedeiro/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Concentração Osmolar
5.
Plant Cell Physiol ; 57(10): 2133-2146, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27440546

RESUMO

Elevated [CO2] (eCO2) can lead to photosynthetic acclimation and this is often intensified by low nitrogen (N). Despite intensive studies of plant responses to eCO2, the regulation mechanism of primary metabolism at the whole-plant level in interaction with [Formula: see text] supply remains unclear. We examined the metabolic and transcriptional responses triggered by eCO2 in association with physiological-biochemical traits in flag leaves and roots of durum wheat grown hydroponically in ambient and elevated [CO2] with low (LN) and high (HN) [Formula: see text] supply. Multivariate analysis revealed a strong interaction between eCO2 and [Formula: see text] supply. Photosynthetic acclimation induced by eCO2 in LN plants was accompanied by an increase in biomass and carbohydrates, and decreases of leaf organic N per unit area, organic acids, inorganic ions, Calvin-Benson cycle intermediates, Rubisco, nitrate reductase activity, amino acids and transcripts for N metabolism, particularly in leaves, whereas [Formula: see text] uptake was unaffected. In HN plants, eCO2 did not decrease photosynthetic capacity or leaf organic N per unit area, but induced transcripts for N metabolism, especially in roots. In conclusion, the photosynthetic acclimation in LN plants was associated with an inhibition of leaf [Formula: see text] assimilation, whereas up-regulation of N metabolism in roots could have mitigated the acclimatory effect of eCO2 in HN plants.


Assuntos
Dióxido de Carbono/farmacologia , Nitratos/farmacologia , Transcrição Gênica/efeitos dos fármacos , Triticum/genética , Triticum/metabolismo , Clorofila/metabolismo , Fluorescência , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Íons , Metaboloma , Análise Multivariada , Nitrogênio , Fotossíntese/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triticum/efeitos dos fármacos
6.
Plant Cell Physiol ; 56(8): 1556-73, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26063390

RESUMO

Only limited public transcriptomics resources are available for durum wheat and its responses to environmental changes. We developed a quantitative reverse transcription-PCR (qRT-PCR) platform for analysing the expression of primary C and N metabolism genes in durum wheat in leaves (125 genes) and roots (38 genes), based on available bread wheat genes and the identification of orthologs of known genes in other species. We also assessed the expression stability of seven reference genes for qRT-PCR under varying environments. We therefore present a functional qRT-PCR platform for gene expression analysis in durum wheat, and suggest using the ADP-ribosylation factor as a reference gene for qRT-PCR normalization. We investigated the effects of elevated [CO(2)] and temperature at two levels of N supply on C and N metabolism by combining gene expression analysis, using our qRT-PCR platform, with biochemical and physiological parameters in durum wheat grown in field chambers. Elevated CO(2) down-regulated the photosynthetic capacity and led to the loss of N compounds, including Rubisco; this effect was exacerbated at low N. Mechanistically, the reduction in photosynthesis and N levels could be associated with a decreased transcription of the genes involved in photosynthesis and N assimilation. High temperatures increased stomatal conductance, and thus did not inhibit photosynthesis, even though Rubisco protein and activity, soluble protein, leaf N, and gene expression for C fixation and N assimilation were down-regulated. Under a future scenario of climate change, the extent to which C fixation capacity and N assimilation are down-regulated will depend upon the N supply.


Assuntos
Dióxido de Carbono/farmacologia , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Triticum/genética , Fatores de Ribosilação do ADP/genética , Temperatura Alta , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribulose-Bifosfato Carboxilase/genética , Triticum/efeitos dos fármacos , Triticum/fisiologia
7.
Cells ; 12(19)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37830569

RESUMO

The advent of high-throughput sequencing technologies has facilitated the profiling of glycosylation genes at a single-cell level in complex biological systems, but the significance of these gene signatures to the composition of the glycocalyx remains ambiguous. Here, we used lectin microarrays to characterize the composition of cell surface glycans in human and mouse corneas and determine its relationship to single-cell transcriptomic data. Our results identify a series of cell surface glycan signatures that are unique to the different cell types of the human cornea and that correlate, to a certain extent, with the transcriptional expression of glycosylation genes. These include pathways involved in the biosynthesis of O-glycans in epithelial cells and core fucose on stromal and endothelial cell surfaces. Moreover, we show that human and mouse corneas display some structural differences in terms of cell surface glycan composition. These results could provide insights into the specialized function of individual cell types in the cornea and foster the identification of novel cornea-specific biomarkers.


Assuntos
Lectinas , Polissacarídeos , Animais , Camundongos , Humanos , Lectinas/metabolismo , Membrana Celular/metabolismo , Análise em Microsséries , Polissacarídeos/metabolismo , Córnea/metabolismo
8.
Sci Rep ; 13(1): 13558, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604830

RESUMO

Membrane-associated mucins (MAMs) are proposed to play critical roles at the ocular surface; however, in vivo evidence has been lacking. Here we investigate these roles by phenotyping of a Muc4 KO mouse. Histochemical analysis for expression of the beta-galactosidase transgene replacing Muc4 revealed a spiraling ribbon pattern across the corneal epithelium, consistent with centripetal cell migration from the limbus. Depletion of Muc4 compromised transcellular barrier function, as evidenced by an increase in rose bengal staining. In addition, the corneal surface was less smooth, consistent with disruption of tear film stability. While surface cells presented with well-developed microprojections, an increase in the number of cells with fewer microprojections was observed. Moreover, an increase in skin-type keratin K10 and a decrease in transcription factor Pax6 was observed, suggesting an incipient transdifferentiation. Despite this, no evidence of inflammatory dry eye disease was apparent. In addition, Muc4 had no effect on signaling by toll-like receptor Tlr4, unlike reports for MUC1 and MUC16. Results of this study provide the first in vivo evidence for the role of MAMs in transcellular barrier function, tear film stability, apical epithelial cell architecture, and epithelial mucosal differentiation at the ocular surface.


Assuntos
Epitélio Corneano , Mucinas , Animais , Camundongos , Face , Lacerações , Membranas , Camundongos Knockout , Mucinas/genética , Mucinas/metabolismo
9.
Biomolecules ; 12(9)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36139007

RESUMO

Monocytes are circulating blood cells that rapidly mobilize to inflamed sites where they serve diverse effector functions shaped in part by microenvironmental cues. The establishment of specific glycosylation patterns on the immune cell glycocalyx is fundamental to direct the inflammatory response, but relatively little is known about the mechanisms whereby the microenvironment controls this process. Here, we report that galectins differentially participate in remodeling the surface glycosylation of human primary CD14+CD16- monocytes under proinflammatory conditions. Using a lectin array on biotinylated protein, we found that the prototypic galectin-1 negatively influenced the expression of galactose epitopes on the surface of monocytic cells. On the other hand, the tandem-repeat galectin-8 and, to a certain extent, the chimeric galectin-3 promoted the expression of these residues. Jacalin flow cytometry and pull-down experiments further demonstrated that galectin-8 causes a profound upregulation of mucin-type O-glycosylation in cell surface proteins from primary monocytes and THP-1 cells. Overall, these results highlight the emerging role of the galectin signature on inflamed tissues and provide new insights into the contribution of extracellular galectins to the composition of the glycocalyx in human monocytes.


Assuntos
Galectina 1 , Monócitos , Epitopos/metabolismo , Galactose/metabolismo , Galectina 1/genética , Galectina 1/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Galectinas/metabolismo , Glicosilação , Humanos , Monócitos/metabolismo , Mucinas/metabolismo
10.
Gigascience ; 112022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35077540

RESUMO

BACKGROUND: Mitigating the effects of global warming has become the main challenge for humanity in recent decades. Livestock farming contributes to greenhouse gas emissions, with an important output of methane from enteric fermentation processes, mostly in ruminants. Because ruminal microbiota is directly involved in digestive fermentation processes and methane biosynthesis, understanding the ecological relationships between rumen microorganisms and their active metabolic pathways is essential for reducing emissions. This study analysed whole rumen metagenome using long reads and considering its compositional nature in order to disentangle the role of rumen microbes in methane emissions. RESULTS: The ß-diversity analyses suggested a subtle association between methane production and overall microbiota composition (0.01 < R2 < 0.02). Differential abundance analysis identified 36 genera and 279 KEGGs as significantly associated with methane production (Padj < 0.05). Those genera associated with high methane production were Eukaryota from Alveolata and Fungi clades, while Bacteria were associated with low methane emissions. The genus-level association network showed 2 clusters grouping Eukaryota and Bacteria, respectively. Regarding microbial gene functions, 41 KEGGs were found to be differentially abundant between low- and high-emission animals and were mainly involved in metabolic pathways. No KEGGs included in the methane metabolism pathway (ko00680) were detected as associated with high methane emissions. The KEGG network showed 3 clusters grouping KEGGs associated with high emissions, low emissions, and not differentially abundant in either. A deeper analysis of the differentially abundant KEGGs revealed that genes related with anaerobic respiration through nitrate degradation were more abundant in low-emission animals. CONCLUSIONS: Methane emissions are largely associated with the relative abundance of ciliates and fungi. The role of nitrate electron acceptors can be particularly important because this respiration mechanism directly competes with methanogenesis. Whole metagenome sequencing is necessary to jointly consider the relative abundance of Bacteria, Archaea, and Eukaryota in the statistical analyses. Nutritional and genetic strategies to reduce CH4 emissions should focus on reducing the relative abundance of Alveolata and Fungi in the rumen. This experiment has generated the largest ONT ruminal metagenomic dataset currently available.


Assuntos
Metano , Rúmen , Animais , Bovinos , Fungos , Metagenoma , Metagenômica , Metano/metabolismo , Rúmen/microbiologia
11.
J Exp Bot ; 62(11): 3957-69, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21511906

RESUMO

Wheat plants (Triticum durum Desf., cv. Regallo) were grown in the field to study the effects of contrasting [CO(2)] conditions (700 versus 370 µmol mol(-1)) on growth, photosynthetic performance, and C management during the post-anthesis period. The aim was to test whether a restricted capacity of sink organs to utilize photosynthates drives a loss of photosynthetic capacity in elevated CO(2). The ambient (13)C/(12)C isotopic composition (δ(13)C) of air CO(2) was changed from -10.2‰ in ambient [CO(2)] to -23.6‰ under elevated [CO(2)] between the 7th and the 14th days after anthesis in order to study C assimilation and partitioning between leaves and ears. Elevated [CO(2)] had no significant effect on biomass production and grain filling, and caused an accumulation of C compounds in leaves. This was accompanied by up-regulation of phosphoglycerate mutase and ATP synthase protein content, together with down-regulation of adenosine diphosphate glucose pyrophosphatase protein. Growth in elevated [CO(2)] negatively affected Rubisco and Rubisco activase protein content and induced photosynthetic down-regulation. CO(2) enrichment caused a specific decrease in Rubisco content, together with decreases in the amino acid and total N content of leaves. The C labelling revealed that in flag leaves, part of the C fixed during grain filling was stored as starch and structural C compounds whereas the rest of the labelled C (mainly in the form of soluble sugars) was completely respired 48 h after the end of labelling. Although labelled C was not detected in the δ(13)C of ear total organic matter and respired CO(2), soluble sugar δ(13)C revealed that a small amount of labelled C reached the ear. The (12)CO(2) labelling suggests that during the beginning of post-anthesis the ear did not contribute towards overcoming flag leaf carbohydrate accumulation, and this had a consequent effect on protein expression and photosynthetic acclimation.


Assuntos
Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Carbono/análise , Triticum/metabolismo , Aclimatação , Aminoácidos/metabolismo , Biomassa , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Respiração Celular , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Nitrogênio/metabolismo , Fosfoglicerato Mutase/metabolismo , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Amido/metabolismo , Triticum/crescimento & desenvolvimento
12.
Rev Invest Clin ; 63(5): 467-74, 2011.
Artigo em Espanhol | MEDLINE | ID: mdl-22468476

RESUMO

BACKGROUND: Iodine is an essential trace element implicated in synthesis of thyroid hormones. Iodine requirements vary throughout life. This iodine requirement is increased during pregnancy and breastfeeding. In a previous study carried out by our group in 2008, we detected an iodine-deficient area in the province of Huelva, specially in district Sierra de Huelva-Andévalo by means of neonatal TSH determinations. OBJECTIVE: To reinforce the iodine supplementation campaign and its impact on their newborns in order to assess nutrition iodine status in pregnant women using questionnaire and ioduria determination. MATERIAL AND METHODS: This study has been jointly carried out by Congenital Hypothyroidism Unit of the Clinical Biochemistry Department of the Virgen Macarena University Hospital (Seville) and the Gynecology and Clinical Analysis Unit of the Río Tinto Hospital (Huelva) during two years. We studied 313 pregnant women. All of them filled out a personal questionnaire to know the iodine nutritional status in their area. Ioduria was determinated by high-resolution liquid chromatography. Data from pregnant women and results of the studied variables were analyzed with SPSS v13.0. CONCLUSIONS: Pregnant women from the sanitary district Sierra de Huelva-Andévalo present a median for ioduria which corresponds to an insufficient iodine intake according to the WHO classification. The questionnaires suggest that this iodine deficiency is consequence of an insufficient iodine intake and a low adherence to the treatment.


Assuntos
Iodo/deficiência , Estado Nutricional , Complicações na Gravidez/epidemiologia , Deficiências Nutricionais/epidemiologia , Feminino , Humanos , Gravidez , Espanha
13.
Ocul Surf ; 21: 313-330, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33775913

RESUMO

Mucins are a family of high molecular weight, heavily-glycosylated proteins produced by wet epithelial tissues, including the ocular surface epithelia. Densely-packed O-linked glycan chains added post-translationally confer the biophysical properties of hydration, lubrication, anti-adhesion and repulsion. Membrane-associated mucins (MAMs) are the distinguishing components of the mucosal glycocalyx. At the ocular surface, MAMs maintain wetness, lubricate the blink, stabilize the tear film, and create a physical barrier to the outside world. In addition, it is increasingly appreciated that MAMs function as cell surface receptors that transduce information from the outside to the inside of the cell. Recently, our team published a comprehensive review/perspectives article for molecular scientists on ocular surface MAMs, including previously unpublished data and analyses on two new genes MUC21 and MUC22, as well as new MAM functions and biological roles, comparing human and mouse (PMID: 31493487). The current article is a refocus for the audience of The Ocular Surface. First, we update the gene and protein information in a more concise form, and include a new section on glycosylation. Next, we discuss biological roles, with some new sections and further updating from our previous review. Finally, we provide a new chapter on MAM involvement in ocular surface disease. We end this with discussion of an emerging mechanism responsible for damage to the epithelia and their mucosal glycocalyces: the unfolded protein response (UPR). The UPR offers a novel target for therapeutic intervention.


Assuntos
Oftalmopatias , Mucinas , Animais , Olho , Humanos , Camundongos , Lágrimas
14.
Plants (Basel) ; 10(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34451641

RESUMO

Global warming will inevitably affect crop development and productivity, increasing uncertainty regarding food production. The exploitation of genotypic variability can be a promising approach for selecting improved crop varieties that can counteract the adverse effects of future climate change. We investigated the natural variation in yield performance under combined elevated CO2 and high-temperature conditions in a set of 60 bread wheat genotypes (59 of the 8TH HTWSN CIMMYT collection and Gazul). Plant height, biomass production, yield components and phenological traits were assessed. Large variations in the selected traits were observed across genotypes. The CIMMYT genotypes showed higher biomass and grain yield when compared to Gazul, indicating that the former performed better than the latter under the studied environmental conditions. Principal component and hierarchical clustering analyses revealed that the 60 wheat genotypes employed different strategies to achieve final grain yield, highlighting that the genotypes that can preferentially increase grain and ear numbers per plant will display better yield responses under combined elevated levels of CO2 and temperature. This study demonstrates the success of the breeding programs under warmer temperatures and the plants' capacity to respond to the concurrence of certain environmental factors, opening new opportunities for the selection of widely adapted climate-resilient wheat genotypes.

15.
Plants (Basel) ; 10(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064280

RESUMO

The progressive rise in atmospheric CO2 concentrations and temperature associated with climate change is predicted to have a major impact on the productivity and quality of food crops. Therefore, food security is highly dependent on climate change. Following a survey with 60 bread wheat genotypes, here we investigated the genetic variation in grain yield and nutritional quality among 10 of these genotypes grown under elevated CO2 and temperature. With this purpose, the biomass production, grain yield-related traits, the grain concentration of starch, total protein, phenolic compounds, and mineral nutrients, together with the total antioxidant capacity, were determined. Variation among genotypes was found for almost all the studied traits. Higher grain and ear numbers were associated with increased grain yield but decreased grain total protein concentration and minerals such as Cu, Fe, Mg, Na, P, and Zn. Mineral nutrients were mainly associated with wheat biomass, whereas protein concentration was affected by plant biomass and yield-related traits. Associations among different nutrients and promising nutrient concentrations in some wheat genotypes were also found. This study demonstrates that the exploration of genetic diversity is a powerful approach, not only for selecting genotypes with improved quality, but also for dissecting the effect of the environment on grain yield and nutritional composition.

16.
Free Radic Biol Med ; 160: 57-66, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32791188

RESUMO

The mucosal epithelia of the ocular surface protect against external threats to the eye. Using a model of human stratified corneal epithelial cells with mucosal differentiation, we previously demonstrated that a small molecule inhibitor of dynamin GTPases, dynasore, prevents damage to cells and their transcellular barriers when subjected to oxidative stress. Investigating mechanisms, we now report the novel finding that dynasore acts by maintaining Ca+2 homeostasis, thereby inhibiting the PERK branch of the unfolded protein response (UPR) that promotes cell death. Dynasore was found to protect mitochondria by preventing mitochondrial permeability transition pore opening (mPTP), but, unlike reports using other systems, this was not mediated by dynamin family member DRP1. Necrostatin-1, an inhibitor of RIPK1 and lytic forms of programmed cell death, also inhibited mPTP opening and further protected the plasma membrane barrier. Significantly, necrostatin-1 did not protect the mucosal barrier. Oxidative stress increased mRNA for sXBP1, a marker of the IRE1 branch of the UPR, and CHOP, a marker of the PERK branch. It also stimulated phosphorylation of eIF2α, the upstream regulator of CHOP, as well as an increase in intracellular Ca2+. Dynasore selectively inhibited the increase in PERK branch markers, and also prevented the increase intracellular Ca2+ in response to oxidative stress. The increase in PERK branch markers were also inhibited when cells were treated with the cell permeable Ca2+ chelator, BAPTA-AM. To our knowledge, this is the first time that dynasore has been shown to have an effect on the UPR and suggests therapeutic applications.


Assuntos
Cálcio , Hidrazonas , Estresse Oxidativo , Resposta a Proteínas não Dobradas , Apoptose , Cálcio/metabolismo , Estresse do Retículo Endoplasmático , Homeostase , Humanos , Hidrazonas/farmacologia
17.
Prog Retin Eye Res ; 75: 100777, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31493487

RESUMO

The mucosal glycocalyx of the ocular surface constitutes the point of interaction between the tear film and the apical epithelial cells. Membrane-associated mucins (MAMs) are the defining molecules of the glycocalyx in all mucosal epithelia. Long recognized for their biophysical properties of hydration, lubrication, anti-adhesion and repulsion, MAMs maintain the wet ocular surface, lubricate the blink, stabilize the tear film and create a physical barrier to the outside world. However, it is increasingly appreciated that MAMs also function as cell surface receptors that transduce information from the outside to the inside of the cell. A number of excellent review articles have provided perspective on the field as it has progressed since 1987, when molecular cloning of the first MAM was reported. The current article provides an update for the ocular surface, placing it into the broad context of findings made in other organ systems, and including new genes, new protein functions and new biological roles. We discuss the epithelial tissue-equivalent with mucosal differentiation, the key model system making these advances possible. In addition, we make the first systematic comparison of MAMs in human and mouse, establishing the basis for using knockout mice for investigations with the complexity of an in vivo system. Lastly, we discuss findings from human genetics/genomics, which are providing clues to new MAM roles previously unimagined. Taken together, this information allows us to generate hypotheses for the next stage of investigation to expand our knowledge of MAM function in intracellular signaling and roles unique to the ocular surface.


Assuntos
Túnica Conjuntiva/metabolismo , Proteínas de Membrana/genética , Mucinas/genética , Lágrimas/metabolismo , Animais , Células Epiteliais/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Mucinas/metabolismo
18.
Physiol Plant ; 135(2): 109-20, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19055543

RESUMO

The temperature dependence of C(3) photosynthesis may be altered by the growth environment. The effects of long-term growth in elevated CO(2) on photosynthesis temperature response have been investigated in wheat (Triticum aestivum L.) grown in controlled chambers with 370 or 700 mumol mol(-1) CO(2) from sowing through to anthesis. Gas exchange was measured in flag leaves at ear emergence, and the parameters of a biochemical photosynthesis model were determined along with their temperature responses. Elevated CO(2) slightly decreased the CO(2) compensation point and increased the rate of respiration in the light and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) V(cmax), although the latter effect was reversed at 15 degrees C. With elevated CO(2), J(max) decreased in the 15-25 degrees C temperature range and increased at 30 and 35 degrees C. The temperature response (activation energy) of V(cmax) and J(max) increased with growth in elevated CO(2). CO(2) enrichment decreased the ribulose 1,5-bisphosphate (RuBP)-limited photosynthesis rates at lower temperatures and increased Rubisco- and RuBP-limited rates at higher temperatures. The results show that the photosynthesis temperature response is enhanced by growth in elevated CO(2). We conclude that if temperature acclimation and factors such as nutrients or water availability do not modify or negate this enhancement, the effects of future increases in air CO(2) on photosynthetic electron transport and Rubisco kinetics may improve the photosynthetic response of wheat to global warming.


Assuntos
Dióxido de Carbono/farmacologia , Fotossíntese/efeitos dos fármacos , Temperatura , Triticum/crescimento & desenvolvimento , Luz , Modelos Biológicos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulosefosfatos/metabolismo , Triticum/efeitos dos fármacos , Triticum/metabolismo
19.
Physiol Plant ; 137(1): 86-100, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19570134

RESUMO

A study was conducted over 2 years to determine whether growth under elevated CO(2) (700 µmol mol(-1) ) and temperature (ambient + 4 °C) conditions modifies photochemical efficiency or only the use of electron transport products in spring wheat grown in field chambers. Elevated atmospheric CO(2) concentrations increased crop dry matter at maturity by 12-17%, while above-ambient temperatures did not significantly affect dry matter yield. In measurements with ambient CO(2) at ear emergence and after anthesis, growth at elevated CO(2) concentrations decreased flag leaf light-saturated carbon assimilation. The quantum yield of electron transport (Φ(PSII) ) measured at ambient CO(2) and higher irradiances increased at ear emergence and decreased after anthesis in plants grown at elevated CO(2) . At higher light intensities, but not in low light, photochemical quenching (qP) decreased after growth in elevated CO(2) conditions. Growth under CO(2) enrichment increased dark- (Fv:Fm) and light-adapted (Fv':Fm') photochemical efficiencies, and decreased the chlorophyll a:b ratio, suggesting an increase in light-harvesting complexes relative to PSII reaction centres. A relatively higher decrease in carbon assimilation than the decrease in Φ(PSII) pointed to a sink other than CO(2) assimilation for electron transport products at defined growth stages. With higher light intensities, warmer temperatures increased Φ(PSII) and Fv':Fm' at ear emergence and decreased Φ(PSII) after anthesis; in ambient-but not elevated-CO(2) , warmer temperatures also decreased qP after anthesis. CO(2) fixation increased or did not change with temperature, depending on the growth stage and year. We conclude that elevated CO(2) decreases the carbon assimilation capacity, but increases photochemistry and resource allocation to light harvesting, and that elevated levels of CO(2) can mitigate photochemistry inhibition as a result of warm temperatures.


Assuntos
Aclimatação/efeitos dos fármacos , Atmosfera/química , Dióxido de Carbono/farmacologia , Aquecimento Global , Temperatura Alta , Processos Fotoquímicos/efeitos dos fármacos , Triticum/efeitos dos fármacos , Triticum/fisiologia , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Clorofila A , Fluorescência , Fotossíntese/efeitos dos fármacos , Triticum/crescimento & desenvolvimento
20.
J Proteomics ; 209: 103502, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31465862

RESUMO

Pyrocystis lunula (Schutt) is a photoautotrophic dinoflagellate without armored form, frequently found in marine environments. Today, there are several biotechnological applications derived from the bioluminescent system of this species. From a post-genomic perspective, in order to have a starting point for studying the proteome of P. lunula, an "omics" approach (transcriptomics-proteomics) was assessed using fresh microalgae samples. A total of 80,874,825 raw reads were generated (11,292,087,505 bp; 55.82% GC) by mRNA sequencing. Very high-quality sequences were assembled into 414,295 contigs (219,203,407 bp; 55.38% GC) using Trinity software, generating a comprehensive reference transcriptome for this species. Then, a P. lunula proteome was inferred and further employed for its analysis on this species. A total of 17,461 peptides were identified, yielding 3182 protein identification hits, including 175 novel proteins. The identified proteins were further categorized according to functional description and gene ontology classification. SIGNIFICANCE: The major contribution of the present work is making available a reference transcriptome and proteome of P. lunula, that is now accessible for the research community, and a functional description of the 3182 proteins inferred from the transcriptome, including 175 novel proteins, which have already been deposited in the ProteomeXchange and NCBI SRA databases, respectively. In addition to this, a series of important factors related to the bioluminescent system and the regulation of gene expression, were identified and described.


Assuntos
Dinoflagellida/química , Proteômica/métodos , Regulação da Expressão Gênica , Proteínas Luminescentes , Proteoma/análise , Software , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA