Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med ; 21(1): 142, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37046291

RESUMO

BACKGROUND: Obesity and neurodevelopmental delay are complex traits that often co-occur and differ between boys and girls. Prenatal exposures are believed to influence children's obesity, but it is unknown whether exposures of pregnant mothers can confer a different risk of obesity between sexes, and whether they can affect neurodevelopment. METHODS: We analyzed data from 1044 children from the HELIX project, comprising 93 exposures during pregnancy, and clinical, neuropsychological, and methylation data during childhood (5-11 years). Using exposome-wide interaction analyses, we identified prenatal exposures with the highest sexual dimorphism in obesity risk, which were used to create a multiexposure profile. We applied causal random forest to classify individuals into two environments: E1 and E0. E1 consists of a combination of exposure levels where girls have significantly less risk of obesity than boys, as compared to E0, which consists of the remaining combination of exposure levels. We investigated whether the association between sex and neurodevelopmental delay also differed between E0 and E1. We used methylation data to perform an epigenome-wide association study between the environments to see the effect of belonging to E1 or E0 at the molecular level. RESULTS: We observed that E1 was defined by the combination of low dairy consumption, non-smokers' cotinine levels in blood, low facility richness, and the presence of green spaces during pregnancy (ORinteraction = 0.070, P = 2.59 × 10-5). E1 was also associated with a lower risk of neurodevelopmental delay in girls, based on neuropsychological tests of non-verbal intelligence (ORinteraction = 0.42, P = 0.047) and working memory (ORinteraction = 0.31, P = 0.02). In line with this, several neurodevelopmental functions were enriched in significant differentially methylated probes between E1 and E0. CONCLUSIONS: The risk of obesity can be different for boys and girls in certain prenatal environments. We identified an environment combining four exposure levels that protect girls from obesity and neurodevelopment delay. The combination of single exposures into multiexposure profiles using causal inference can help determine populations at risk.


Assuntos
Obesidade Infantil , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Criança , Humanos , Masculino , Feminino , Caracteres Sexuais , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Desenvolvimento Infantil
2.
Aging (Albany NY) ; 16(4): 3088-3106, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38393697

RESUMO

Senolytics, small molecules targeting cellular senescence, have emerged as potential therapeutics to enhance health span. However, their impact on epigenetic age remains unstudied. This study aimed to assess the effects of Dasatinib and Quercetin (DQ) senolytic treatment on DNA methylation (DNAm), epigenetic age, and immune cell subsets. In a Phase I pilot study, 19 participants received DQ for 6 months, with DNAm measured at baseline, 3 months, and 6 months. Significant increases in epigenetic age acceleration were observed in first-generation epigenetic clocks and mitotic clocks at 3 and 6 months, along with a notable decrease in telomere length. However, no significant differences were observed in second and third-generation clocks. Building upon these findings, a subsequent investigation evaluated the combination of DQ with Fisetin (DQF), a well-known antioxidant and antiaging senolytic molecule. After one year, 19 participants (including 10 from the initial study) received DQF for 6 months, with DNAm assessed at baseline and 6 months. Remarkably, the addition of Fisetin to the treatment resulted in non-significant increases in epigenetic age acceleration, suggesting a potential mitigating effect of Fisetin on the impact of DQ on epigenetic aging. Furthermore, our analyses unveiled notable differences in immune cell proportions between the DQ and DQF treatment groups, providing a biological basis for the divergent patterns observed in the evolution of epigenetic clocks. These findings warrant further research to validate and comprehensively understand the implications of these combined interventions.


Assuntos
Metilação de DNA , Flavonóis , Quercetina , Humanos , Quercetina/farmacologia , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Senoterapia , Estudos Longitudinais , Projetos Piloto , Envelhecimento , Epigênese Genética
3.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293193

RESUMO

Background: Differentially methylated imprint control regions (ICRs) regulate the monoallelic expression of imprinted genes. Their epigenetic dysregulation by environmental exposures throughout life results in the formation of common chronic diseases. Unfortunately, existing Infinium methylation arrays lack the ability to profile these regions adequately. Whole genome bisulfite sequencing (WGBS) is the unique method able to profile these regions, but it is very expensive and it requires not only a high coverage but it is also computationally intensive to assess those regions. Findings: To address this deficiency, we developed a custom methylation array containing 22,819 probes. Among them, 9,757 probes map to 1,088 out of the 1,488 candidate ICRs recently described. To assess the performance of the array, we created matched samples processed with the Human Imprintome array and WGBS, which is the current standard method for assessing the methylation of the Human Imprintome. We compared the methylation levels from the shared CpG sites and obtained a mean R 2 = 0.569. We also created matched samples processed with the Human Imprintome array and the Infinium Methylation EPIC v2 array and obtained a mean R 2 = 0.796. Furthermore, replication experiments demonstrated high reliability (ICC: 0.799-0.945). Conclusions: Our custom array will be useful for replicable and accurate assessment, mechanistic insight, and targeted investigation of ICRs. This tool should accelerate the discovery of ICRs associated with a wide range of diseases and exposures, and advance our understanding of genomic imprinting and its relevance in development and disease formation throughout the life course.

4.
Epigenetics ; 18(1): 2214392, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37216580

RESUMO

Tobacco, alcohol, and marijuana consumption is an important public health problem because of their high use worldwide and their association with the risk of mortality and many health conditions, such as hypertension, which is the commonest risk factor for death throughout the world. A likely pathway of action of substance consumption leading to persistent hypertension is DNA methylation. Here, we evaluated the effects of tobacco, alcohol, and marijuana on DNA methylation in the same cohort (N = 3,424). Three epigenome-wide association studies (EWAS) were assessed in whole blood using the InfiniumHumanMethylationEPIC BeadChip. We also evaluated the mediation of the top CpG sites in the association between substance consumption and hypertension. Our analyses showed 2,569 CpG sites differentially methylated by alcohol drinking and 528 by tobacco smoking. We did not find significant associations with marijuana consumption after correcting for multiple comparisons. We found 61 genes overlapping between alcohol and tobacco that were enriched in biological processes involved in the nervous and cardiovascular systems. In the mediation analysis, we found 66 CpG sites that significantly mediated the effect of alcohol consumption on hypertension. The top alcohol-related CpG site (cg06690548, P-value = 5.9·10-83) mapped to SLC7A11 strongly mediated 70.5% of the effect of alcohol consumption on hypertension (P-value = 0.006). Our findings suggest that DNA methylation should be considered for new targets in hypertension prevention and management, particularly concerning alcohol consumption. Our data also encourage further research into the use of methylation in blood to study the neurological and cardiovascular effects of substance consumption.


The consumption of tobacco, alcohol, and marijuana is very high worldwide and is associated with common diseases, like cardiovascular and neurological disorders.This study found that tobacco and alcohol have large effects on genome wide DNA methylation while marijuana consumption has nonsignificant effects.The genes differentially methylated were enriched in pathways related to neurodevelopment, suggesting the mediation between recreational drug consumption and neurological disorders.More remarkably, 66 alcohol related CpG sites significantly mediated the association between heavy drinking and hypertension.Our findings suggest that DNA methylation changes should be considered for new targets in disease prevention for recreational drug consumers.


Assuntos
Cannabis , Hipertensão , Humanos , Metilação de DNA , Cannabis/genética , Epigênese Genética , Estudo de Associação Genômica Ampla , Hipertensão/genética , DNA , Etanol , Ilhas de CpG
5.
bioRxiv ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37904959

RESUMO

Biological aging is a multifactorial process involving complex interactions of cellular and biochemical processes that is reflected in omic profiles. Using common clinical laboratory measures in ~30,000 individuals from the MGB-Biobank, we developed a robust, predictive biological aging phenotype, EMRAge, that balances clinical biomarkers with overall mortality risk and can be broadly recapitulated across EMRs. We then applied elastic-net regression to model EMRAge with DNA-methylation (DNAm) and multiple omics, generating DNAmEMRAge and OMICmAge, respectively. Both biomarkers demonstrated strong associations with chronic diseases and mortality that outperform current biomarkers across our discovery (MGB-ABC, n=3,451) and validation (TruDiagnostic, n=12,666) cohorts. Through the use of epigenetic biomarker proxies, OMICmAge has the unique advantage of expanding the predictive search space to include epigenomic, proteomic, metabolomic, and clinical data while distilling this in a measure with DNAm alone, providing opportunities to identify clinically-relevant interconnections central to the aging process.

6.
Commun Biol ; 5(1): 455, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35550596

RESUMO

Polymorphic genomic inversions are chromosomal variants with intrinsic variability that play important roles in evolution, environmental adaptation, and complex traits. We investigated the DNA methylation patterns of three common human inversions, at 8p23.1, 16p11.2, and 17q21.31 in 1,009 blood samples from children from the Human Early Life Exposome (HELIX) project and in 39 prenatal heart tissue samples. We found inversion-state specific methylation patterns within and nearby flanking each inversion region in both datasets. Additionally, numerous inversion-exposure interactions on methylation levels were identified from early-life exposome data comprising 64 exposures. For instance, children homozygous at inv-8p23.1 and higher meat intake were more susceptible to TDH hypermethylation (P = 3.8 × 10-22); being the inversion, exposure, and gene known risk factors for adult obesity. Inv-8p23.1 associated hypermethylation of GATA4 was also detected across numerous exposures. Our data suggests that the pleiotropic influence of inversions during development and lifetime could be substantially mediated by allele-specific methylation patterns which can be modulated by the exposome.


Assuntos
Metilação de DNA , Expossoma , Adulto , Alelos , Criança , Inversão Cromossômica , Feto , Humanos , Obesidade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA