Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 326(6): F971-F980, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634133

RESUMO

The dietary approach to stop hypertension (DASH) diet combines the antihypertensive effect of a low sodium and high potassium diet. In particular, the potassium component of the diet acts as a switch in the distal convoluted tubule to reduce sodium reabsorption, similar to a diuretic but without the side effects. Previous trials to understand the mechanism of the DASH diet were based on animal models and did not characterize changes in human ion channel protein abundance. More recently, protein cargo of urinary extracellular vesicles (uEVs) has been shown to mirror tissue content and physiological changes within the kidney. We designed an inpatient open label nutritional study transitioning hypertensive volunteers from an American style diet to DASH diet to examine physiological changes in adults with stage 1 hypertension otherwise untreated (Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER 3rd, Simons-Morton DG, Karanja N, Lin PH; DASH-Sodium Collaborative Research Group. N Engl J Med 344: 3-10, 2001). Urine samples from this study were used for proteomic characterization of a large range of pure uEVs (small to large) to reveal kidney epithelium changes in response to the DASH diet. These samples were collected from nine volunteers at three time points, and mass spectrometry identified 1,800 proteins from all 27 samples. We demonstrated an increase in total SLC12A3 [sodium-chloride cotransporter (NCC)] abundance and a decrease in aquaporin-2 (AQP2) in uEVs with this mass spectrometry analysis, immunoblotting revealed a significant increase in the proportion of activated (phosphorylated) NCC to total NCC and a decrease in AQP2 from day 5 to day 11. This data demonstrates that the human kidney's response to nutritional interventions may be captured noninvasively by uEV protein abundance changes. Future studies need to confirm these findings in a larger cohort and focus on which factor drove the changes in NCC and AQP2, to which degree NCC and AQP2 contributed to the antihypertensive effect and address if some uEVs function also as a waste pathway for functionally inactive proteins rather than mirroring protein changes.NEW & NOTEWORTHY Numerous studies link DASH diet to lower blood pressure, but its mechanism is unclear. Urinary extracellular vesicles (uEVs) offer noninvasive insights, potentially replacing tissue sampling. Transitioning to DASH diet alters kidney transporters in our stage 1 hypertension cohort: AQP2 decreases, NCC increases in uEVs. This aligns with increased urine volume, reduced sodium reabsorption, and blood pressure decline. Our data highlight uEV protein changes as diet markers, suggesting some uEVs may function as waste pathways. We analyzed larger EVs alongside small EVs, and NCC in immunoblots across its molecular weight range.


Assuntos
Aquaporina 2 , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Aquaporina 2/metabolismo , Aquaporina 2/urina , Masculino , Feminino , Pessoa de Meia-Idade , Abordagens Dietéticas para Conter a Hipertensão , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Hipertensão/dietoterapia , Hipertensão/urina , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Adulto , Dieta Hipossódica , Pressão Sanguínea , Proteômica/métodos , Rim/metabolismo
2.
FEBS Lett ; 594(20): 3324-3337, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32862441

RESUMO

Humoral immunity in mammals relies on the function of two developmentally and functionally distinct B-cell subsets-B1 and B2 cells. While B2 cells are responsible for the adaptive response to environmental antigens, B1 cells regulate the production of polyreactive and low-affinity antibodies for innate humoral immunity. The molecular mechanism of B-cell specification into different subsets is understudied. In this study, we identified lysine methyltransferase NSD2 (MMSET/WHSC1) as a critical regulator of B1 cell development. In contrast to its minor impact on B2 cells, deletion of the catalytic domain of NSD2 in primary B cells impairs the generation of B1 lineage. Thus, NSD2, a histone H3 K36 dimethylase, is the first-in-class epigenetic regulator of a B-cell lineage in mice.


Assuntos
Linfócitos B/metabolismo , Domínio Catalítico , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Animais Recém-Nascidos , Centro Germinativo/metabolismo , Histonas/metabolismo , Imunidade Humoral , Switching de Imunoglobulina , Lisina/metabolismo , Metilação , Camundongos Endogâmicos C57BL , Relação Estrutura-Atividade , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA