Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Nucl Med ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960711

RESUMO

Despite the recent advances in understanding the mechanisms of olfaction, no tools are currently available to noninvasively identify loss of smell. Because of the substantial increase in patients presenting with coronavirus disease 2019-related loss of smell, the pandemic has highlighted the urgent need to develop quantitative methods. Methods: Our group investigated the use of a novel fluorescent probe named Tsp1a-IR800P as a tool to diagnose loss of smell. Tsp1a-IR800P targets sodium channel 1.7, which plays a critical role in olfaction by aiding the signal propagation to the olfactory bulb. Results: Intuitively, we have identified that conditions leading to loss of smell, including chronic inflammation and coronavirus disease 2019, correlate with the downregulation of sodium channel 1.7 expression in the olfactory epithelium, both at the transcript and at the protein levels. We demonstrated that lower Tsp1a-IR800P fluorescence emissions significantly correlate with loss of smell in live animals-thus representing a potential tool for its semiquantitative assessment. Currently available methods rely on delayed subjective behavioral studies. Conclusion: This method could aid in significantly improving preclinical and clinical studies by providing a way to objectively diagnose loss of smell and therefore aid the development of therapeutic interventions.

2.
bioRxiv ; 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36482968

RESUMO

The sense of smell (olfaction) is one of the most important senses for animals including humans. Despite significant advances in the understanding mechanism of olfaction, currently, there are no objective non-invasive methods that can identify loss of smell. Covid-19-related loss of smell has highlighted the need to develop methods that can identify loss of olfaction. Voltage-gated sodium channel 1.7 (NaV1.7) plays a critical role in olfaction by aiding the signal propagation to the olfactory bulb. We have identified several conditions such as chronic inflammation and viral infections such as Covid-19 that lead to loss of smell correlate with downregulation of NaV1.7 expression at transcript and protein levels in the olfactory epithelium. Leveraging this knowledge, we have developed a novel fluorescent probe Tsp1a-IR800 that targets NaV1.7. Using fluorescence imaging we can objectively measure the loss of sense of smell in live animals non-invasively. We also demonstrate that our non-invasive method is semiquantitative because the loss of fluorescence intensity correlates with the level of smell loss. Our results indicate, that our probe Tsp1a-IR800, can objectively diagnose anosmia in animal and human subjects using infrared fluorescence. We believe this method to non-invasively diagnose loss of smell objectively is a significant advancement in relation to current methods that rely on highly subjective behavioral studies and can aid in studying olfaction loss and the development of therapeutic interventions.

3.
Curr Radiopharm ; 14(2): 101-106, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32895047

RESUMO

BACKGROUND: One of the challenges in positron emission tomography (PET) is labelling complex aliphatic molecules. OBJECTIVE: This study aimed to develop a method of metal-catalysed radiofluorination that is site-selective and works in moderate to good yields under facile conditions. METHODS: Herein, we report on the optimisation of an aliphatic C-H to C-18F bond transformation catalysed by a Mn(porphyrin) complex. RESULTS: The successful oxidation of 11 aliphatic molecules, including progesterone, is reported. Radiochemical Incorporations (RCIs) up to 69% were achieved within 60 min without the need for pre-activation or special equipment. CONCLUSION: The method features mild conditions (60 °C) and promises to constitute a valuable approach to labelling of biomolecules and drug substances.


Assuntos
Radioisótopos de Flúor/química , Manganês/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Humanos , Radioquímica , Compostos Radiofarmacêuticos/química , Relação Estrutura-Atividade
4.
Nucl Med Biol ; 98-99: 69-75, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34058614

RESUMO

PURPOSE: Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus 2019 disease (COVID-19), poses a serious risk to humanity and represents a huge challenge for healthcare systems worldwide. Since the early days of the COVID-19 pandemic, it has been evident that adequate testing is an essential step in limiting and controlling the spread of SARS-CoV-2. Here, we present an accurate, inexpensive, scalable, portable, and rapid detection kit to directly detect SARS-CoV-2 in biological samples that could even be translated for population testing. We have demonstrated that our method can reliably identify viral load and could be used to reach those fractions of the population with limited access to more sophisticated and expensive tests. PROCEDURES: The proposed SARS-CoV-2 detection kit is based on the combination of a SARS-CoV-2-targeted antibody (CR3022) that targets spike protein S1 domain on the viral surface. This antibody was radiolabeled with a long-lived isotope (Iodine-125) to allow us to detect bound antibody in samples with SARS-CoV-2. We used a series of in vitro assays to determine sensitivity and specificity and facilitate automation of the testing kit. Bound antibody was extracted from saliva samples via a centrifugation step and a semi-permeable membrane. Our kit was further validated using SARS-CoV-2 virions. RESULTS: We were able to accomplish radiosynthesis of [125I]I-CR3022 reliably without loss of binding. The SARS-CoV-2-sensing antibody was shown to maintain its spike S1 affinity and to bind to as low as 2.5-5 ng of spike protein. We then used beads-bound spike S1 to develop a separation kit which proved to be both easy to use and inexpensive. The kit made it possible to extract bound antibody from the saliva-like sample. We were able to validate the separation kit using intact SARS-CoV-2 virions and showed that our kit can detect a viral concentration as low as 19,700 PFU/mL (~ 9.22%TBF) and as high as 1,970,000 PFU/mL (45.04%TBF). CONCLUSION: Here we report the development and validation of a SARS-CoV-2 detection system based on the combination of a specific radiolabeled antibody and a separation membrane. We demonstrate our system to be comparable to other SARS-CoV-2 detection kits already approved by the FDA and believe this technology could be easily deployed to countries with limited resources for the diagnosis of COVID-19. Furthermore, workflows could be easily adapted to target other antigens and therefore other types of diseases.


Assuntos
Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Marcação por Isótopo , Limite de Detecção , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo
5.
Chem Sci ; 10(21): 5603-5615, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31293745

RESUMO

Microbubble (MB) contrast agents have revolutionalised the way ultrasound (US) imaging can be used clinically and pre-clinically. Contrast-enhanced US offers improvements in soft-tissue contrast, as well as the ability to visualise disease processes at the molecular level. However, its inability to provide in vivo whole-body imaging can hamper the development of new MB formulations. Herein, we describe a fast and efficient method for achieving 68Ga-labelling of MBs after a direct comparison of two different strategies. The optimised approach produces 68Ga-labelled MBs in good yields through the bioorthogonal inverse-electron-demand Diel-Alder reaction between a trans-cyclooctene-modified phospholipid and a new tetrazine-bearing HBED-CC chelator. The ability to noninvasively study the whole-body distribution of 68Ga-labelled MBs was demonstrated in vivo using positron emission tomography (PET). This method could be broadly applicable to other phospholipid-based formulations, providing accessible solutions for in vivo tracking of MBs.

6.
ACS Infect Dis ; 5(12): 1996-2002, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31345032

RESUMO

Bedaquiline is a promising drug against tuberculosis (TB), but limited data are available on its intralesional pharmacokinetics. Moreover, current techniques rely on invasive tissue resection, which is difficult in humans and generally limited even in animals. In this study, we developed a novel radiosynthesis for 76Br-bedaquiline and performed noninvasive, longitudinal whole-body positron emission tomography (PET) in live, Mycobacterium tuberculosis-infected mice over 48 h. After the intravenous injection, 76Br-bedaquiline distributed to all organs and selectively localized to adipose tissue and liver, with excellent penetration into infected lung lesions (86%) and measurable penetration into the brain parenchyma (15%). Ex vivo high resolution, two-dimensional autoradiography, and same section hematoxylin/eosin and immunofluorescence provided detailed intralesional drug biodistribution. PET bioimaging and high-resolution autoradiography are novel techniques that can provide detailed, multicompartment, and intralesional pharmacokinetics of new and existing TB drugs. These technologies can significantly advance efforts to optimize drug dosing.


Assuntos
Diarilquinolinas/farmacocinética , Tomografia por Emissão de Pósitrons , Tuberculose/tratamento farmacológico , Imagem Corporal Total , Administração Intravenosa , Animais , Autorradiografia , Diarilquinolinas/uso terapêutico , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/microbiologia , Camundongos , Tuberculose/diagnóstico por imagem
7.
Chem Commun (Camb) ; 50(67): 9557-60, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25012592

RESUMO

Herein, we describe a fast and robust method for achieving (68)Ga-labelling of the EGFR-selective monoclonal antibody (mAb) Cetuximab using the bioorthogonal Inverse-electron-Demand Diels-Alder (IeDDA) reaction. The in vivo imaging of EGFR is demonstrated, as well as the translation of the method within a two-step pretargeting strategy.


Assuntos
Anticorpos Monoclonais Humanizados/química , Marcação por Isótopo/métodos , Tomografia por Emissão de Pósitrons , Animais , Anticorpos Monoclonais Humanizados/imunologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Cetuximab , Receptores ErbB/imunologia , Radioisótopos de Gálio , Humanos , Camundongos , Fatores de Tempo
8.
Clin Cancer Res ; 19(14): 3914-24, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23729364

RESUMO

PURPOSE: Induction of apoptosis in tumors is considered a desired goal of anticancer therapy. We investigated whether the dynamic temporal and spatial evolution of apoptosis in response to cytotoxic and mechanism-based therapeutics could be detected noninvasively by the caspase-3 radiotracer [(18)F]ICMT-11 and positron emission tomography (PET). EXPERIMENTAL DESIGN: The effects of a single dose of the alkylating agent cyclophosphamide (CPA or 4-hydroperoxycyclophosphamide), or the mechanism-based small molecule SMAC mimetic birinapant on caspase-3 activation was assessed in vitro and by [(18)F]ICMT-11-PET in mice bearing 38C13 B-cell lymphoma, HCT116 colon carcinoma, or MDA-MB-231 breast adenocarcinoma tumors. Ex vivo analysis of caspase-3 was compared to the in vivo PET imaging data. RESULTS: Drug treatment increased the mean [(18)F]ICMT-11 tumor uptake with a peak at 24 hours for CPA (40 mg/kg; AUC40-60: 8.04 ± 1.33 and 16.05 ± 3.35 %ID/mL × min at baseline and 24 hours, respectively) and 6 hours for birinapant (15 mg/kg; AUC40-60: 20.29 ± 0.82 and 31.07 ± 5.66 %ID/mL × min, at baseline and 6 hours, respectively). Voxel-based spatiotemporal analysis of tumor-intrinsic heterogeneity suggested that discrete pockets of caspase-3 activation could be detected by [(18)F]ICMT-11. Increased tumor [(18)F]ICMT-11 uptake was associated with caspase-3 activation measured ex vivo, and early radiotracer uptake predicted apoptosis, distinct from the glucose metabolism with [(18)F]fluorodeoxyglucose-PET, which depicted continuous loss of cell viability. CONCLUSION: The proapoptotic effects of CPA and birinapant resulted in a time-dependent increase in [(18)F]ICMT-11 uptake detected by PET. [(18)F]ICMT-11-PET holds promise as a noninvasive pharmacodynamic biomarker of caspase-3-associated apoptosis in tumors.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Ciclofosfamida/farmacologia , Animais , Azidas , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Dipeptídeos/farmacologia , Ativação Enzimática , Feminino , Células HCT116 , Humanos , Indóis/farmacologia , Linfoma de Células B/diagnóstico por imagem , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/enzimologia , Linfoma de Células B/patologia , Camundongos , Camundongos Endogâmicos C3H , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA