Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 106(19): 193009, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21668155

RESUMO

The first experimental evidence of rotational Doppler broadening in photoelectron spectra, reported here, show good agreement with recently described theoretical predictions. The dependence of the broadening on temperature and photoelectron kinetic energy is quantitatively predicted by the theory. The experiments verify that the rotational contributions to the linewidth are comparable to those from translational Doppler broadening and must be considered in the analysis of high-resolution photoelectron spectra. A classical model accounting for this newly observed effect is presented.

2.
Phys Rev Lett ; 89(22): 223001, 2002 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-12485066

RESUMO

The silicon 2p photoelectron spectra for SiH4, SiF4, and SiCl4 have been analyzed to give the natural linewidths of the Si 2p hole states, which reflect the Auger decay rates of the states. For SiH4 the measured width of 38 meV is in approximate agreement with the prediction of the one-center model (32 meV), but that for SiF4 of 79 meV is more than 5 times the value of 14 meV predicted by this model. Approximate theoretical calculations indicate that valence electrons from the fluorine atoms of SiF4 play an important role in the Auger decay via interatomic processes.

3.
J Am Chem Soc ; 123(43): 10729-37, 2001 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-11674006

RESUMO

High-resolution carbon 1s photoelectron spectroscopy of propyne (HC triple bond CCH3) shows a spectrum in which the contributions from the three chemically inequivalent carbons are clearly resolved and marked by distinct vibrational structure. This structure is well accounted for by ab initio theory. For 3,3,3-trifluoropropyne (HC triple bond CCF3) and ethynylsulfur pentafluoride (HC triple bond CSF5), the ethynyl carbons show only a broad structure and have energies that differ only slightly from one another. The core-ionization energies can be qualitatively understood in terms of conventional resonance structures; the vibrational broadening for the fluorinated compounds can be understood in terms of the effects of the electronegative fluorines on the charge distribution. Combining the experimental results with gas-phase acidities and with ab initio calculations provides insights into the effects of initial-state charge distribution and final-state charge redistribution on ionization energies and acidities. In particular, these considerations make it possible to understand the apparent paradox that SF5 and CF3 have much larger electronegativity effects on acidity than they have on carbon 1s ionization energies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA