Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biochem ; 118(1): 163-171, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27292441

RESUMO

CA125 is serum tumor marker consisting of an epitope carried by a portion of the extremely large (>3 MDa), heavily glycosylated cell surface transmembrane mucin, MUC16. In malignancies, membrane bound mucins lose their polarized distribution, become aberrantly over-expressed and protect tumor cells from the actions of chemotherapeutic agents as well as the immune system. Previously, we described stimulation of MUC16 expression by the proinflammatory cytokines, tumor necrosis factor α (TNFα) and interferon γ (IFNγ), in breast and ovarian cancer cells and tissues. Herein, we show that PPARγ modulates cytokine-stimulated MUC16 in a complex manner: at low concentrations (<10 µM) rosiglitazone further potentiates cytokine-driven MUC16 expression while at high concentrations (>20 µM) rosiglitazone antagonizes cytokine stimulation. Rosiglitazone actions were fully reversible by the PPARγ antagonist, GW9662. Furthermore, siRNA-mediated PPARγ knockdown also prevented a large portion of high dose rosiglitazone suppression of MUC16 expression indicating that rosiglitazone inhibition is largely PPARγ-dependent. Cytokines greatly (>75%) suppressed PPARγ expression. Conversely, PPARγ activation by rosiglitazone at either low or high concentrations greatly (>75%) suppressed NFκB/p65 expression. NFκB/p65 expression was largely preserved in the presence of cytokines at low, but not high, rosiglitazone concentrations accounting for the different concentration dependent effects on MUC16 expression. Collectively, these studies demonstrate that PPARγ is an important modulator of MUC16 expression. The ability to deliver high doses of PPARγ agonists to MUC16-expressing tumors offers an avenue to reduce expression of this protective glycoprotein and increase tumor sensitivity to killing by chemotherapeutic drugs and the immune system. J. Cell. Biochem. 118: 163-171, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Neoplasias da Mama/metabolismo , Antígeno Ca-125/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/biossíntese , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , PPAR gama/metabolismo , Anilidas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Antígeno Ca-125/genética , Feminino , Humanos , Interferon gama/farmacologia , Células MCF-7 , Proteínas de Membrana/genética , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , PPAR gama/genética , Rosiglitazona , Tiazolidinedionas/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
2.
J Cell Biochem ; 116(11): 2649-57, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25923310

RESUMO

MUC4, a transmembrane glycoprotein, interferes with cell adhesion, and promotes EGFR signaling in cancer. Studies in rat models have demonstrated steroid hormonal regulation of endometrial MUC4 expression. In this study, qRT-PCR screening of mouse tissues determined that Muc4 mRNA also was robustly expressed in mouse uteri. Previous studies from our labs have demonstrated MUC4 mRNA was expressed at levels <1% of MUC1 mRNA in human endometrium and endometriotic tissue. Multiple human endometrial adenocarcinoma cell lines were assayed for MUC4 mRNA expression revealing extremely low basal expression in the Ishikawa, RL-95-2, AN3CA, and KLE lines. Moderate to high expression was observed in HEC50 and HEC-1A cells. MUC4 mRNA expression was not affected by progesterone and/or estrogen treatment, but was greatly stimulated at both mRNA and protein levels by proinflammatory cytokines (IFN-γ and TNF-α), particularly when used in combination. In endometrial tissue, MUC4 mRNA levels did not change significantly between normal or cancerous samples; although, a subset of patients with grade 1 and 2 tumors displayed substantially higher expression. Likewise, immunostaining of human endometrial adenocarcinoma tissues revealed little to no staining in many patients (low MUC4), but strong staining in some patients (high MUC4) independent of cancer grade. In cases where staining was observed, it was heterogeneous with some cells displaying robust MUC4 expression and others displaying little or no staining. Collectively, these observations demonstrate that while MUC4 is highly expressed in the mouse uterus, it is not a major mucin in normal human endometrium. Rather, MUC4 is a potential marker of endometrial adenocarcinoma in a subset of patients.


Assuntos
Adenocarcinoma/patologia , Neoplasias do Endométrio/patologia , Endométrio/metabolismo , Mucina-4/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Linhagem Celular Tumoral , Citocinas/farmacologia , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Estrogênios/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Células MCF-7 , Masculino , Camundongos , Mucina-4/metabolismo , Progesterona/farmacologia
3.
Adv Anat Embryol Cell Biol ; 216: 51-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26450494

RESUMO

Transmembrane mucins (TMs) are extremely large, complex glycoproteins that line the apical surfaces of simple epithelia including those of the female reproductive tract. TMs provide a physical barrier consistent with their role as part of the innate immune system. This barrier function must be overcome in the context of embryo implantation to permit blastocyst attachment. Three major TMs have been identified in uterine epithelia of multiple species: MUC1, MUC4, and MUC16. MUC1 has been found in all species studied to date, whereas expression of MUC4 and MUC16 have been less well studied and may be species specific. The strategies for removing mucins to permit embryo attachment also vary in a species-specific way and include both hormonal suppression of TM gene expression and membrane clearance via cell surface proteases. Studies emerging from the cancer literature indicate that TMs can modulate a surprisingly wide variety of signal transduction processes. Furthermore, various cell surface proteins have been identified that bind either the oligosaccharide or protein motifs of TMs suggesting that these molecules may support cell attachment in some contexts, including trophoblast interactions with cells of the immune system. The intimate association of TMs at sites of embryo-maternal interaction and the varied functions these complex molecules can play make them key players in embryo implantation and placentation processes.


Assuntos
Implantação do Embrião , Mucinas/metabolismo , Placenta/fisiologia , Animais , Feminino , Expressão Gênica , Humanos , Mucinas/genética , Gravidez
4.
J Cell Biochem ; 115(7): 1322-33, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24700612

RESUMO

Perlecan/HSPG2, a heparan sulfate proteoglycan typically found at tissue borders including those separating epithelia and connective tissue, increases near sites of invasion of primary prostatic tumors as previously shown for other proteins involved in desmoplastic tissue reaction. Studies of prostate cancer cells and stromal cells from both prostate and bone, the major site for prostate cancer metastasis, showed that cancer cells and a subset of stromal cells increased production of perlecan in response to cytokines present in the tumor microenvironment. In silico analysis of the HSPG2 promoter revealed two conserved NFκB binding sites, in addition to the previously reported SMAD3 binding sites. By systematically transfecting cells with a variety of reporter constructs including sequences up to 2.6 kb from the start site of transcription, we identified an active cis element in the distal region of the HSPG2 promoter, and showed that it functions in regulating transcription of HSPG2. Treatment with TNF-α and/or TGFß1 identified TNF-α as a major cytokine regulator of perlecan production. TNF-α treatment also triggered p65 nuclear translocation and binding to the HSPG2 regulatory region in stromal cells and cancer cells. In addition to stromal induction of perlecan production in the prostate, we identified a matrix-secreting bone marrow stromal cell type that may represent the source for increases in perlecan in the metastatic bone marrow environment. These studies implicate perlecan in cytokine-mediated, innate tissue responses to cancer cell invasion, a process we suggest reflects a modified wound healing tissue response co-opted by prostate cancer cells.


Assuntos
Proteoglicanas de Heparan Sulfato/biossíntese , Neoplasias da Próstata/genética , Células Estromais/citologia , Fator de Transcrição RelA/metabolismo , Ativação Transcricional , Transporte Ativo do Núcleo Celular , Sítios de Ligação , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Proteoglicanas de Heparan Sulfato/genética , Humanos , Masculino , Regiões Promotoras Genéticas , Próstata/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
5.
J Cell Biochem ; 114(10): 2314-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23686469

RESUMO

MUC1 is a large cell surface mucin glycoprotein that plays diverse roles in both normal and tumor cell biology. These roles include mucosal hydration and protection, inhibition of embryo implantation, protection of tumor cells from the immune system and reduction of cytotoxic drug uptake. Similarly, the EGFR family of cell surface receptors drives many normal developmental processes as well as various aspects of tumor growth and gene expression. EGFR family members have been demonstrated to form complexes with MUC1 in various cellular contexts. Nonetheless, the role that EGFR activation plays in modulating MUC1 levels has not been considered. In this study, we demonstrate that activated EGFR drives high level MUC1 expression in multiple cell lines of uterine adenocarcinoma and pancreatic cancer origins. In some cells, addition of exogenous EGFR ligands (EGF or HB-EGF) elevates MUC1 levels while addition of the EGFR tyrosine kinase inhibitor, AG1478, reduces MUC1 levels. The thiazolidinedione, rosiglitazone, previously shown to reduce progesterone-stimulated MUC1 expression, also blocks EGFR ligand-driven MUC1 expression. This activity was observed at relatively high rosiglitazone concentrations (above 10 µM) and appeared to be largely PPARγ independent indicating a novel utility of this drug to reduce mucin-expression in various tumor settings. Collectively, these data demonstrate that: (1) activation of EGFR stimulates MUC1 expression in multiple cellular contexts and (2) it may be possible to develop useful interventions to reduce MUC1 expression as a complementary strategy for tumor therapy.


Assuntos
Receptores ErbB/metabolismo , Mucina-1/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Uterinas/metabolismo , Western Blotting , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Quinazolinas/farmacologia , Rosiglitazona , Tiazolidinedionas/farmacologia , Tirfostinas/farmacologia
6.
Diagnostics (Basel) ; 12(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35328163

RESUMO

Medical imaging devices often use automated processing that creates and displays a self-normalized image. When improperly executed, normalization can misrepresent information or result in an inaccurate analysis. In the case of diagnostic imaging, a false positive in the absence of disease, or a negative finding when disease is present, can produce a detrimental experience for the patient and diminish their health prospects and prognosis. In many clinical settings, a medical technical specialist is trained to operate an imaging device without sufficient background information or understanding of the fundamental theory and processes involved in image creation and signal processing. Here, we describe a user-friendly image processing algorithm that mitigates user bias and allows for true signal to be distinguished from background. For proof-of-principle, we used antibody-targeted molecular imaging of colorectal cancer (CRC) in a mouse model, expressing human MUC1 at tumor sites. Lesion detection was performed using targeted magnetic resonance imaging (MRI) of hyperpolarized silicon particles. Resulting images containing high background and artifacts were then subjected to individualized image post-processing and comparative analysis. Post-acquisition image processing allowed for co-registration of the targeted silicon signal with the anatomical proton magnetic resonance (MR) image. This new methodology allows users to calibrate a set of images, acquired with MRI, and reliably locate CRC tumors in the lower gastrointestinal tract of living mice. The method is expected to be generally useful for distinguishing true signal from background for other cancer types, improving the reliability of diagnostic MRI.

7.
Prostate ; 71(2): 157-67, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20665531

RESUMO

BACKGROUND: Preferential bony metastasis of human prostate cancer (PCa) cells contributes to disease mortality and morbidity. Local factors in bone stromal extracellular matrix microenvironment affect tumor growth through paracrine interactions between tumor and stromal cells. METHODS: Using co-culture and medium transfer, we used several methods to assess interactions between PCa and bone stromal cells using three PCa cell lines: PC3, LNCaP, and the LNCaP derivative, C4-2B. RESULTS: Co-culture of LNCaP and C4-2B cells with bone marrow stromal cell lines, HS27a and HS5, decreased cell number, as did culture with conditioned medium (CM) harvested from these two cell lines suggesting a soluble paracrine factor was responsible. PC3 cell growth was unaffected. CM harvested from bone stromal cell lines triggered apoptosis in LNCaP and C4-2B cell lines, but not in PC3 cells. Surviving C4-2B cells grown in bone stromal cell CM over several days were growth arrested, suggesting presence of a growth inhibitor. Apoptosis induced by CM was dose-dependent. Flow cytometry demonstrated that over a 5-day culture period in stromal cell CM, LNCaP, and C4-2B cell lines, but not PC3 cells, underwent greater apoptosis than parallel cultures in SF medium. The LNCaP and C4-2B cells showed morphology and biomarker expression consistent with transdifferentiation towards a neuroendocrine phenotype after exposure to stromal cell CM. CONCLUSIONS: The reactive bone stromal microenvironment initially is hostile to PCa cells producing widespread apoptosis. Activation of transdifferentiation in a subset of apoptotic resistant cells may support phenotypic adaptation during disease progression in bone, eventually favoring lethal disease.


Assuntos
Apoptose/fisiologia , Células da Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Tumores Neuroendócrinos/patologia , Neoplasias da Próstata/patologia , Western Blotting , Células da Medula Óssea/patologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Processos de Crescimento Celular/fisiologia , Técnicas de Cocultura , Meios de Cultivo Condicionados , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Masculino , Neoplasias Hormônio-Dependentes/metabolismo , Neoplasias Hormônio-Dependentes/patologia , Tumores Neuroendócrinos/metabolismo , Neoplasias da Próstata/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia
8.
Cell Mol Life Sci ; 66(21): 3421-34, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19629389

RESUMO

Heparan sulfate proteoglycans are a remarkably diverse family of glycosaminoglycan-bearing protein cores that include the syndecans, the glypicans, perlecan, agrin, and collagen XVIII. Members of this protein class play key roles during normal processes that occur during development, tissue morphogenesis, and wound healing. As key components of basement membranes in organs and tissues, they also participate in selective filtration of biological fluids, in establishing cellular barriers, and in modulation of angiogenesis. The ability to perform these functions is provided both by the features of the protein cores as well as by the unique properties of heparan sulfate, which is assembled as a polymer of N-acetylglucosamine and glucuronic acid and modified by specific enzymes to generate specialized biologically active structures. This article discusses the structures and functions of this amazing family of proteoglycans and provides a platform for further study of the individual members.


Assuntos
Proteoglicanas de Heparan Sulfato/fisiologia , Animais , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Antígenos de Superfície/fisiologia , Membrana Celular/metabolismo , Espaço Extracelular/metabolismo , Proteoglicanas de Heparan Sulfato/química , Proteoglicanas de Heparan Sulfato/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Modelos Biológicos
9.
PLoS One ; 15(5): e0230354, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32413029

RESUMO

Bone marrow stroma influences metastatic prostate cancer (PCa) progression, latency, and recurrence. At sites of PCa bone metastasis, cancer-associated fibroblasts and tumor-associated macrophages interact to establish a perlecan-rich desmoplastic stroma. As a heparan sulfate proteoglycan, perlecan (HSPG2) stores and stabilizes growth factors, including heparin-binding Wnt3A, a positive regulator of PCa cell growth. Because PCa cells alone do not induce CAF production of perlecan in the desmoplastic stroma, we sought to discover the sources of perlecan and its growth factor-releasing modifiers SULF1, SULF2, and heparanase in PCa cells and xenografts, bone marrow fibroblasts, and macrophages. SULF1, produced primarily by bone marrow fibroblasts, was the main glycosaminoglycanase present, a finding validated with primary tissue specimens of PCa metastases with desmoplastic bone stroma. Expression of both HSPG2 and SULF1 was concentrated in αSMA-rich stroma near PCa tumor nests, where infiltrating pro-tumor TAMs also were present. To decipher SULF1's role in the reactive bone stroma, we created a bone marrow biomimetic hydrogel incorporating perlecan, PCa cells, macrophages, and fibroblastic bone marrow stromal cells. Finding that M2-like macrophages increased levels of SULF1 and HSPG2 produced by fibroblasts, we examined SULF1 function in Wnt3A-mediated PCa tumoroid growth in tricultures. Comparing control or SULF1 knockout fibroblastic cells, we showed that SULF1 reduces Wnt3A-driven growth, cellularity, and cluster number of PCa cells in our 3D model. We conclude that SULF1 can suppress Wnt3A-driven growth signals in the desmoplastic stroma of PCa bone metastases, and SULF1 loss favors PCa progression, even in the presence of pro-tumorigenic TAMs.


Assuntos
Neoplasias Ósseas/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Neoplasias da Próstata/metabolismo , Sulfotransferases/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Via de Sinalização Wnt , Neoplasias Ósseas/secundário , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Hidrogéis/química , Macrófagos/metabolismo , Masculino , Neoplasias da Próstata/patologia , Células Estromais/metabolismo
10.
J Cell Biochem ; 108(4): 802-15, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19711367

RESUMO

Understanding the underlying mechanisms by which a normal cell avoids the oncogenic potential of MUC1 signaling requires further definition of the pathways by which the MUC1 cytoplasmic tail is processed in both normal and tumor-derived cells. In the present study we describe the processing pathway initiated by TACE/ADAM17 cleavage of MUC1. Utilizing the human uterine epithelial cell line, HES, derived from normal endometrium, we show that endogenous full length MUC1 undergoes regulated intramembranous proteolysis mediated by presenillin-dependent gamma-secretase. Cytokine-stimulated HES cells exposed to gamma-secretase inhibitors accumulated a membrane-associated 15 kDa fragment of the MUC1 C-terminal subunit (CTF15). Inhibitors of TACE/ADAM17-mediated shedding inhibited accumulation of MUC1-CTF15 and MUC1 ectodomain release to a similar extent consistent with MUC1-CTF15 being a product of TACE/ADAM17 action. Reduction of catalytically active gamma-secretase complex by nicastrin siRNA treatment also resulted in CTF15 accumulation. Furthermore, mature nicastrin, the substrate receptor for gamma-secretase, co-immunoprecipitated with CTF15 in the presence of gamma-secretase inhibitors indicating the formation of CTF15: nicastrin complexes. MUC1-CTF15 accumulation in response to gamma-secretase inhibition was demonstrated in both normal and tumor-derived cells from humans and mice indicating that this processing pathway exists in many cell contexts. We did not detect products of MUC1 cleavage by gamma-secretase in the presence of various proteasomal inhibitors indicating that subsequent degradation is either non-proteasomal or extremely efficient. We suggest that this efficient pathway attenuates potential signaling mediated by cytoplasmic tail fragments.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Implantação do Embrião , Endométrio/metabolismo , Mucina-1/metabolismo , Proteínas ADAM/metabolismo , Proteína ADAM17 , Secretases da Proteína Precursora do Amiloide/química , Animais , Linhagem Celular , Citocinas/metabolismo , Dimerização , Feminino , Humanos , Glicoproteínas de Membrana/química , Camundongos , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais
11.
Biol Reprod ; 81(6): 1182-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19684334

RESUMO

Embryo implantation involves direct interaction of the blastocyst with the luminal epithelium of the receptive uterus. MUC1, a transmembrane mucin expressed at the apical surface of uterine epithelia, acts as a barrier to microbial infection and enzymatic attack. Loss of MUC1 is believed to be a prerequisite for a functionally receptive uterus across many species. Human and murine MUC1 regulation by steroid hormones displays important differences. Estrogen (E2) stimulates MUC1 expression in mice, and progesterone (P4) antagonizes E2 action in this regard. MUC1 expression is severely reduced during the receptive uterine state in mice. In contrast, human MUC1 expression is maximal at the receptive or midluteal phase, when P4 levels are high. No information is available regarding regulation of human MUC1 in vivo at the site of embryo attachment. Our aim was to better understand regulation of human MUC1 during early pregnancy in vivo. For this purpose, we used a transgenic mouse carrying full-length human MUC1 gene (Tg(MUC1)79.24Gend) as well as endogenous MUC1 as a model system. Human MUC1 was detected by real-time RT-PCR, Western blotting, and immunohistochemistry during early pregnancy. Our data indicate that human MUC1 persists at reduced (20% relative to Day 1 postcoitum) levels in receptive-phase uteri, including the site of embryo attachment. In contrast, mouse MUC1 was much more severely (>98% relative to Day 1 postcoitum) reduced in the same context. These observations are consistent with distinct regulation between the human and mouse genes. Because these genes are expressed in the same transcriptional context (i.e., mouse uterine epithelia), structural differences between human and murine genes must account for these differences in MUC1 regulation.


Assuntos
Implantação do Embrião/genética , Endométrio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Mucina-1/genética , Prenhez , Animais , Western Blotting , Células Epiteliais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Mucina-1/metabolismo , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
12.
Acta Biomater ; 97: 385-398, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31351252

RESUMO

Growth factor gradients orchestrate many biological processes including organogenesis, wound healing, cancer invasion, and metastasis. Heparin-binding growth factor (HBGF) gradients are established in living systems by proteoglycans including the extracellular matrix heparan sulfate proteoglycan, perlecan/HSPG2. Three potential HBGF-binding glycosaminoglycan attachment sites occur in N-terminal domain I of perlecan's five domains. Our overarching goal was to form stable, biomimetic non-covalently bound HBGF gradients surrounding cells encapsulated in hyaluronate-based hydrogels by first establishing perlecan domain I (PlnD1) gradients. A versatile multichannel gradient maker device (MGMD) was designed and 3D printed, then used to create desired gradients of microparticles in hydrogels. Next, we used the device to covalently incorporate gradients of PEGylated PlnD1 in hydrogels with high-low-high or high-medium-low concentrations across the hydrogel width. Fluorescently-labeled fibroblast growth factor-2 was delivered to hydrogels in phosphate-buffered saline and allowed to electrostatically bind to the covalently pre-incorporated PlnD1, producing stable non-covalent HBGF gradients. To test cell viability after flow through the MGMD, delicate primary human salivary stem/progenitor cells were encapsulated in gradient hydrogels where they showed high viability and continued to grow. Next, to test migratory behavior in response to HBGF gradients, two cell types, preosteoblastic MC3T3-E1 cell line and breast cancer cell line MDA-MB-231 were encapsulated in or adjacent to PlnD1-modified hydrogels. Both cell lines migrated toward HBGFs bound to PlnD1. We conclude that establishing covalently-bound PlnD1 gradients in hydrogels provides a new means to establish physiologically-relevant gradients of HBGFs that are useful for a variety of applications in tissue engineering and cancer biology. STATEMENT OF SIGNIFICANCE: Gradients of heparin binding growth factors (HBGFs) direct cell behavior in living systems. HBGFs bind electrostatically to gradients of HS proteoglycans in the extracellular matrix creating HBGF gradients. We recreated HBGF gradients in physiological hyaluronate-based hydrogels using a 3D-printed multichannel gradient maker device (MGMD) that created gradients of HS proteoglycan-derived perlecan/HSPG2 domain I. We demonstrated the ability of a variety of cells, including primary salivary stem/progenitor cells, pre-osteoblastic cells and an invasive breast cancer cell line, to be co-encapsulated in gradient hydrogels by flowing them together through the MGMD. The versatile device and the ability to create HBGF gradients in hydrogels for a variety of applications is innovative and of broad utility in both cancer biology and tissue engineering applications.


Assuntos
Materiais Biomiméticos/química , Movimento Celular , Fator 2 de Crescimento de Fibroblastos/química , Proteoglicanas de Heparan Sulfato/química , Hidrogéis/química , Glândulas Salivares/metabolismo , Células-Tronco/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Glândulas Salivares/citologia , Células-Tronco/citologia
13.
Matrix Biol ; 27(2): 150-60, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17997086

RESUMO

Perlecan/HSPG2 is a large, multi-domain, multifunctional heparan sulfate proteoglycan with a wide tissue distribution. With the exception of its unique domain I, each of perlecan's other four domains shares sequence similarity to other protein families including low density lipoprotein (LDL) receptor, laminin alpha chain, neural cell adhesion molecule (NCAM), immunoglobulin (Ig) superfamily members, and epidermal growth factor (EGF). Previous studies demonstrated that glycosaminoglycan-bearing perlecan domain I supports early chondrogenesis and growth factor delivery. Other sites in the core protein interact with other matrix molecules and support cell adhesion, although the peptide sequences involved remain unidentified. To identify novel functional motifs within perlecan, we used a bioinformatics approach to predict regions likely to be on the exterior of the folded protein. Unique hydrophilic sequences of about 18 amino acids were selected for testing in cell adhesion assays. A novel peptide sequence (TWSKVGGHLRPGIVQSG) from an immunoglobulin (Ig) repeat in domain IV supported rapid cell adhesion, spreading and focal adhesion kinase (FAK) activation when compared to other peptides, a randomly scrambled sequence of the domain IV peptide or a negative control protein. MG-63 human osteosarcoma cells, epithelial cells and multipotent C(3)H10T1/2 cells, but not bone marrow cells, rapidly, i.e., within 30 min, formed focal adhesions and assembled an actin cytoskeleton on domain IV peptide. Cell lines differentially adhered to the domain IV peptide, suggesting adhesion is receptor specific. Adhesion was divalent cation independent and heparin sensitive, a finding that may explain some previously poorly understood observations obtained with intact perlecan. Collectively, these studies demonstrate the feasibility of using bioinformatics-based strategies to identify novel functional motifs in matrix proteins such as perlecan.


Assuntos
Movimento Celular/fisiologia , Quinase 1 de Adesão Focal/metabolismo , Proteoglicanas de Heparan Sulfato/fisiologia , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Cátions Bivalentes/farmacologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Biologia Computacional/métodos , Citoesqueleto/metabolismo , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proteoglicanas de Heparan Sulfato/química , Heparina/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Integrina beta1/imunologia , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fosforilação , Soroalbumina Bovina/química
14.
J Cell Biochem ; 105(5): 1183-93, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18980226

RESUMO

HIP/RPL29 is a heparan sulfate (HS) binding protein with diverse activities including modulation of heparanase (HPSE) activity. We examined HIP/RPL29's ability to modulate actions of HS-binding growth factors (HBGFs) in angiogenesis. Between 1 and 2.5 microg/ml (ca. 60-150 nM), HIP/RPL29 inhibited HBGF-stimulated endothelial cell tube formation. Aortic explant outgrowth also was inhibited, but at higher concentrations (40 microg/ml). At this concentration, HIP/RPL29 had no effect on HBGF-stimulated MAPK phosphorylation or VEGF-stimulated receptor-2 phosphorylation at site Y-996. Partial inhibition occurred at VEGF receptor-2 site Y951, associated with cell migration. HBGF displacement from HS-bearing perlecan domain I showed that HIP/RPL29 released 50% of bound HBGF at 20 microg/ml, a dose where endothelial tube formation is inhibited. Similar FGF2 release occurred at pH 5.0 and 7.0, conditions where HPSE is highly and residually active, respectively. We considered that HIP/RPL29 inhibits HPSE-dependent release of HS-bound HBGFs. At pH 5.0, release of soluble HS was inhibited by 64% at concentrations of 5 microg/ml and by 77% at 40 microg/ml, indicating that HIP/RPL29 antagonizes HPSE activity. At concentrations up to 40 microg/ml (ca. 2.5 microM) where angiogenic processes are inhibited, release of FGF2 occurred in the presence of HPSE and HIP/RPL29. The majority of this FGF2 is not bound to soluble HS. Studies of HIP/RPL29 binding to HS indicated that many structural features of HS are important in modulation of HBGF activities. Our findings suggest that inhibition of angiogenic processes by HIP/RPL29 involves attenuation of the formation of soluble, biologically active HBGF:HS complexes that activate HBGF receptors.


Assuntos
Fatores de Coagulação Sanguínea/metabolismo , Fator 2 de Crescimento de Fibroblastos/antagonistas & inibidores , Heparitina Sulfato/metabolismo , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Células Cultivadas , Humanos , Proteínas de Ligação a RNA , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas
15.
Mol Cancer Res ; 5(6): 585-603, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17579118

RESUMO

A dynamic interplay between prostate cancer cells and reactive bone stroma modulates growth of metastases within bone. We used microarray analysis to screen for changes in gene expression in bone marrow stromal cells cocultured with prostate cancer cells and found reduced expression of endoglin, a transmembrane glycoprotein that functions as an auxiliary coreceptor for members of the transforming growth factor beta (TGF-beta) family of cytokines. The downstream TGF-beta/bone morphogenetic protein signaling pathway including Smad1 and Smad2/3 also was attenuated, as was Smad-dependent gene transcription. Smad1/5/8-dependent inhibitor of DNA binding 1 expression and Smad2/3-dependent plasminogen activator inhibitor I expression both were decreased and were accompanied by decreased cell proliferation. Small interfering RNA-mediated knockdown of endoglin in HS-5 cells verified that the effects on signaling were a direct result of the attenuation of endoglin. These data illustrate that endoglin acts as a positive regulator of both activin receptor-like kinase 1-induced Smad1/5/8 activation and activin receptor-like kinase 5-induced Smad2/3 activation in bone marrow stromal cells. In addition, the data illustrate that one early event of metastasis upon the arrival of prostate cancer cells into the bone stroma is attenuated endoglin expression in the stromal cells, which subsequently alters Smad signaling and cell proliferation. We hypothesize that coculture of bone marrow stromal cells with prostate cancer cells alters TGF-beta signaling in the stromal cells, ultimately facilitating growth of the cancer cells in the bone compartment. Collectively, these studies suggest that prostate cancer cells modulate TGF-beta responsiveness of bone marrow stroma as one means of facilitating their own growth in bone.


Assuntos
Células da Medula Óssea/citologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Células Estromais/citologia , Fator de Crescimento Transformador beta/metabolismo , Antígenos CD/metabolismo , Apoptose , Osso e Ossos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Endoglina , Humanos , Masculino , Metástase Neoplásica , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
16.
Mol Endocrinol ; 21(11): 2725-37, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17717071

RESUMO

Mucin 1 (MUC1) is a transmembrane glycoprotein that modulates the interaction between the embryo and the uterine epithelial cell surface. MUC1 also is a tumor marker and has been implicated in the protection of cancer cells from immune cell attack as well as in cell signaling in some tumors. We and others have shown that MUC1 expression is activated by progesterone (P), TNF-alpha, and interferon-gamma (IFN-gamma). Here we demonstrate that MUC1 expression is down-regulated by overexpression of members of the protein inhibitor of activated signal transducer and activator of transcription (PIAS) family, PIAS1, PIAS3, PIASxalpha, PIASxbeta, and PIASy, in human uterine epithelial cell lines HES and HEC-1A and in a breast cancer cell line, T47D. Treatments with P, TNF-alpha, and IFN-gamma were unable to overcome the repression by PIASy. PIASy repression of basal, P-, and TNF-alpha-stimulated MUC1 promoter activity was not dependent on the PIASy sumoylation domain. In contrast, PIASy suppression of IFN-gamma-activated MUC1 promoter activity was dependent on the PIASy sumoylation domain. PIASy and P receptor B were localized to the nucleus upon P treatment, and small interfering RNA knockdown of PIASy resulted in an increase in P-mediated stimulation of MUC1 protein expression. Overexpression of PIASy did not affect P receptor B binding to the MUC1 promoter but surprisingly led to a loss of nuclear receptor corepressor (NCoR), which was recruited to the promoter in response to P. Collectively, these data indicate that PIASy may be a useful target for down-regulation of MUC1 expression in various contexts.


Assuntos
Regulação Neoplásica da Expressão Gênica , Mucina-1/biossíntese , Proteínas Inibidoras de STAT Ativados/metabolismo , Biomarcadores Tumorais , Neoplasias da Mama/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Endométrio/metabolismo , Feminino , Humanos , Interferon gama/metabolismo , Ligantes , Mucina-1/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , Progesterona/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Útero/metabolismo
17.
Mol Endocrinol ; 20(10): 2278-91, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16740655

RESUMO

MUC1 expression responds differently to changes in progesterone (P) levels in mouse vs. human uterine epithelium. Two isoforms of progesterone receptor, PRA and PRB, mediate the physiological effects of P. Using transient transfection of a human uterine epithelial cell line, HEC-1A, we showed that liganded PRB stimulated MUC1 gene activity. PRA alone had little effect on MUC1 promoter activity, but antagonized the PRB-mediated stimulation. The region from 523 to 570 bp upstream of the transcriptional start site was shown to be required for the P response. Mutation of two potential P-responsive element (PRE) half-sites in this region partially inhibited the PRB-mediated response, and one PRE half-site disrupted binding of both PRB and PRA to a consensus PRE in an EMSA. These along with other studies indicated that multiple cis elements in the -523- to -570-bp region cooperate to mediate P responsiveness, and that PR interaction with other transcription factors in this region is likely. Using ovariectomized wild-type, PR knockout (PRKO), PRAKO, and PRBKO mice, P antagonism of estrogen-stimulated Muc1 protein and mRNA expression was shown to be dependent on PRA. In summary, these data show that liganded PRB stimulates MUC1 expression in human uterine epithelial cells, whereas liganded PRA antagonizes MUC1 expression in both human and mouse uterine epithelial cells. The differential MUC1 response to P in these two species may be due to dissimilar expression of the two PR isoforms in the uterine epithelium.


Assuntos
Antígenos de Neoplasias/metabolismo , Regulação da Expressão Gênica/fisiologia , Mucinas/metabolismo , Receptores de Progesterona/metabolismo , Útero/metabolismo , Animais , Antígenos de Neoplasias/genética , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Células Epiteliais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Mucina-1 , Mucinas/genética , Mutagênese , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Receptores de Progesterona/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Útero/citologia
18.
Clin Exp Metastasis ; 23(1): 75-86, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16826426

RESUMO

Hypoxia develops at sites of rapid cancer growth near sites of poorly organized vasculature. Heparin binding growth factors (HBGFs) support neoangiogenesis of tumors. We examined the effect of culturing bone-targeted, metastatic C4-2B prostate cancer cells and bone stromal derived HS27a cells under hypoxic conditions on expression of vascular endothelial growth factor (VEGF) family members. A sealed chamber infused with 1% (hypoxic) or 20% (normoxic) O(2) was used. Both cell lines produced VEGF-A in normoxia, but little or no HB-EGF, another HBGF. HS27a cells produced low levels of FGF-2 and HGF, but little or none was secreted by C4-2B cells. Levels of VEGF-A in conditioned medium (CM) from both cell lines doubled when cultured in hypoxia. Similar changes in VEGF-A mRNA levels were seen. Receptor expression was unchanged by hypoxia. Changes in VEGF-A expression during hypoxia were preceded by nuclear accumulation of hypoxia inducible factor-1alpha (HIF-1alpha). Bone marrow endothelial (BME) cells express high levels of VEGFR2/flk-1, and are targets of VEGF-A induced neovascularization. BME cells proliferated in response to treatment with HS27a CM, but not C4-2B CM. BME cells formed tube-like angiogenic structures on growth factor reduced Matrigel in response to CM from HS27a or C4-2B cells. This response was greater when CM was produced under hypoxia, and was reduced by VEGF-A or FGF-2 neutralizing antibodies. We conclude that hypoxia triggers a physiologically relevant increase in VEGF-A by prostate cancer and bone marrow stromal cells which involves a paracrine loop that recruits and activates BME to support tumor neovascularization-related processes.


Assuntos
Células da Medula Óssea/patologia , Hipóxia Celular/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Neoplasias da Próstata/genética , Fator A de Crescimento do Endotélio Vascular/genética , Neoplasias Ósseas/secundário , Divisão Celular , Linhagem Celular Tumoral , Primers do DNA , Humanos , Masculino , Neoplasias da Próstata/patologia , RNA Mensageiro/genética , RNA Neoplásico/genética , RNA Neoplásico/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/patologia
19.
Front Biosci ; 11: 2903-8, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16720361

RESUMO

MUC1 is a large, transmembrane mucin glycoprotein abundantly expressed at the apical surface of uterine epithelia in all species examined to date. Loss of MUC1 at the time of embryo implantation occurs in many species; however, this does not appear to be the case in humans. Recent studies indicate that human blastocysts express L-selectin at their external surfaces raising the possibility that selectin ligands expressed at the apical surface of the uterine epithelium support early stages of blastocyst attachment. In the current study, we have used a panel of antibodies specific for selectin ligands to determine if MUC1 functions as a scaffold for these carbohydrate motifs in fertile women. The results demonstrate that MUC1 carries selectin ligands throughout the secretory phase of the menstrual cycle, including the mid-secretory (receptive) phase. Consequently, MUC1 represents a potential ligand for selectins expressed by human blastocysts.


Assuntos
Implantação do Embrião/fisiologia , Selectina L/metabolismo , Ciclo Menstrual/metabolismo , Mucinas/metabolismo , Útero/metabolismo , Anticorpos , Antígenos de Neoplasias , Western Blotting , Feminino , Humanos , Imunoprecipitação , Ligantes , Glicoproteínas de Membrana/metabolismo , Mucina-1
20.
Tissue Eng ; 12(7): 2009-24, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16889529

RESUMO

Extracellular matrix (ECM) molecules in cartilage cooperate with growth factors to regulate chondrogenic differentiation and cartilage development. Domain I of perlecan (Pln) bears heparan sulfate chains that bind and release heparin binding growth factors (HBGFs). We hypothesized that Pln domain I (PlnDI) might be complexed with collagen II (P-C) fibrils to improve binding of bone morphogenetic protein-2 (BMP-2) and better support chondrogenesis and cartilage-like tissue formation in vitro. Our results showed that P-C fibrils bound more BMP-2 than collagen II fibrils alone, and better sustained BMP-2 release. Polylactic acid (PLA)-based scaffolds coated with P-C fibrils immobilized more BMP-2 than either PLA scaffolds or PLA scaffolds coated with collagen II fibrils alone. Multipotential mouse embryonic mesenchymal cells, C3H10T1/2, were cultured on 2-dimensional P-C fibrils or 3-dimensional P-C/BMP-2-coated (P-C-B) PLA scaffolds. Chondrogenic differentiation was indexed by glycosaminoglycan (GAG) production, and expression of the pro-chondrogenic transcription factor, Sox9, as well as cartilaginous ECM proteins, collagen II, and aggrecan. Immunostaining for aggrecan, perlecan, tenascin, and collagen X revealed that both C3H10T1/2 cells and primary mouse embryonic fibroblasts cultured on P-C-B fibrils showed the highest expression of chondrogenic markers among all treatment groups. Safranin O-Fast Green staining indicated that cartilage-like tissue was formed in the P-C-B scaffolds, while no obvious cartilage-like tissue formed in other scaffolds. We conclude that P-C fibrils provide an improved biomimetic material for the binding and retention of BMP-2 and support chondrogenic differentiation.


Assuntos
Proteínas Morfogenéticas Ósseas , Condrogênese/fisiologia , Colágeno Tipo II , Embrião de Mamíferos/fisiologia , Fibroblastos/fisiologia , Proteoglicanas de Heparan Sulfato , Células-Tronco/fisiologia , Fator de Crescimento Transformador beta , Animais , Antígenos de Diferenciação/metabolismo , Proteína Morfogenética Óssea 2 , Linhagem Celular , Embrião de Mamíferos/citologia , Matriz Extracelular , Fibroblastos/citologia , Camundongos , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA