Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Mol Psychiatry ; 22(11): 1604-1614, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27457812

RESUMO

Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1-3% of the general population. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause autosomal recessive ID (ARID) has lagged behind, predominantly due to non-availability of sizeable families. Here we present the results of exome sequencing in 121 large consanguineous Pakistani ID families. In 60 families, we identified homozygous or compound heterozygous DNA variants in a single gene, 30 affecting reported ID genes and 30 affecting novel candidate ID genes. Potential pathogenicity of these alleles was supported by co-segregation with the phenotype, low frequency in control populations and the application of stringent bioinformatics analyses. In another eight families segregation of multiple pathogenic variants was observed, affecting 19 genes that were either known or are novel candidates for ID. Transcriptome profiles of normal human brain tissues showed that the novel candidate ID genes formed a network significantly enriched for transcriptional co-expression (P<0.0001) in the frontal cortex during fetal development and in the temporal-parietal and sub-cortex during infancy through adulthood. In addition, proteins encoded by 12 novel ID genes directly interact with previously reported ID proteins in six known pathways essential for cognitive function (P<0.0001). These results suggest that disruptions of temporal parietal and sub-cortical neurogenesis during infancy are critical to the pathophysiology of ID. These findings further expand the existing repertoire of genes involved in ARID, and provide new insights into the molecular mechanisms and the transcriptome map of ID.


Assuntos
Deficiência Intelectual/genética , Alelos , Consanguinidade , Exoma/genética , Família , Frequência do Gene/genética , Estudos de Associação Genética/métodos , Humanos , Mutação , Paquistão , Linhagem , Sequenciamento do Exoma/métodos
4.
J Hum Hypertens ; 25(9): 560-4, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20927129

RESUMO

Familial hyperaldosteronism type II (FH-II) is an inherited form of hyperaldosteronism associated with hypertension in most patients. The mutations that cause FH-II are unknown, but linkage analysis has mapped them to chromosome 7p22. As FH-II is clinically indistinguishable from sporadic primary aldosteronism, a common and treatable condition, unravelling the cause of FH-II has important implications for these sporadic cases. To investigate whether FH-II is caused by large deletions or insertions, we examined the virtual karyotype of four pairs of affected and unaffected individuals using high-density bead chips. We also sequenced the coding regions of five 7p22 candidate genes that were prioritized because of their putative role in cell growth. We found no evidence of single-nucleotide polymorphism (SNP) copy number variation between pairs, and from the widest gap on the chip, chromosome 7p22 deletions or insertions exceeding ∼50 kb in these pedigrees can be excluded. We found 15 SNPs (two of which were novel), but none of them were non-synonymous and segregated with the disease in the FH-II pedigrees. We have been able to exclude large genomic deletions or insertions at 7p22 and refine the candidate gene list for this locus, but the mutations causing FH-II remain elusive.


Assuntos
Cromossomos Humanos Par 7 , Hiperaldosteronismo/genética , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição Forkhead/genética , Genótipo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA