Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31852790

RESUMO

Vaccination is the most effective way to prevent influenza virus infections. However, the diversity of antigenically distinct isolates is a challenge for vaccine development. In order to overcome the antigenic variability and improve the protective efficacy of influenza vaccines, our research group has pioneered the development of computationally optimized broadly reactive antigens (COBRA) for hemagglutinin (HA). Two candidate COBRA HA vaccines, P1 and X6, elicited antibodies with differential patterns of hemagglutination inhibition (HAI) activity against a panel of H1N1 influenza viruses. In order to better understand how these HA antigens elicit broadly reactive immune responses, epitopes in the Cb, Sa, or Sb antigenic sites of seasonal-like and pandemic-like wild-type or COBRA HA antigens were exchanged with homologous regions in the COBRA HA proteins to determine which regions and residues were responsible for the elicited antibody profile. Mice were vaccinated with virus-like particles (VLPs) expressing one of the 12 modified HA antigens (designated V1 to V12), COBRA HA antigens, or wild-type HA antigens. The elicited antisera was assessed for hemagglutination inhibition activity against a panel of historical seasonal-like and pandemic-like H1N1 influenza viruses. Primarily, the pattern of glycosylation sites and residues in the Sa antigenic region, around the receptor binding site (RBS), served as signatures for the elicitation of broadly reactive antibodies by these HA immunogens. Mice were vaccinated with VLPs expressing HA antigens that lacked a glycosylation site at residue 144 and a deleted lysine at position 147 residue were more effective at protecting against morbidity and mortality following infection with pandemic-like and seasonal-like H1N1 influenza viruses.IMPORTANCE There is a great need to develop broadly reactive or universal vaccines against influenza viruses. Advanced, next-generation hemagglutinin (HA) head-based vaccines that elicit protective antibodies against H1N1 influenza viruses have been developed. This study focused on understanding the specific amino acids around the receptor binding site (RBS) that were important in elicitation of these broadly reactive antibodies. Specific glycan sites and amino acids located at the tip of the HA molecule enhanced the elicitation of these broadly reactive antibodies. A better understanding of the HA structures around the RBS will lead to more effective HA immunogens.


Assuntos
Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Polissacarídeos/imunologia , Animais , Anticorpos Antivirais/genética , Antígenos Virais/genética , Cães , Feminino , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vacinas contra Influenza/genética , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Polissacarídeos/genética
5.
J Virol ; 91(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978710

RESUMO

Each influenza season, a set of wild-type viruses, representing one H1N1, one H3N2, and one to two influenza B isolates, are selected for inclusion in the annual seasonal influenza vaccine. In order to develop broadly reactive subtype-specific influenza vaccines, a methodology called computationally optimized broadly reactive antigens (COBRA) was used to design novel hemagglutinin (HA) vaccine immunogens. COBRA technology was effectively used to design HA immunogens that elicited antibodies that neutralized H5N1 and H1N1 isolates. In this report, the development and characterization of 17 prototype H3N2 COBRA HA proteins were screened in mice and ferrets for the elicitation of antibodies with HA inhibition (HAI) activity against human seasonal H3N2 viruses that were isolated over the last 48 years. The most effective COBRA HA vaccine regimens elicited antibodies with broader HAI activity against a panel of H3N2 viruses than wild-type H3 HA vaccines. The top leading COBRA HA candidates were tested against cocirculating variants. These variants were not efficiently detected by antibodies elicited by the wild-type HA from viruses selected as the vaccine candidates. The T-11 COBRA HA vaccine elicited antibodies with HAI and neutralization activity against all cocirculating variants from 2004 to 2007. This is the first report demonstrating broader breadth of vaccine-induced antibodies against cocirculating H3N2 strains compared to the wild-type HA antigens that were represented in commercial influenza vaccines.IMPORTANCE There is a need for an improved influenza vaccine that elicits immune responses that recognize a broader number of influenza virus strains to prevent infection and transmission. Using the COBRA approach, a set of vaccines against influenza viruses in the H3N2 subtype was tested for the ability to elicit antibodies that neutralize virus infection against not only historical vaccine strains of H3N2 but also a set of cocirculating variants that circulated between 2004 and 2007. Three of the H3N2 COBRA vaccines recognized all of the cocirculating strains during this era, but the chosen wild-type vaccine strains were not able to elicit antibodies with HAI activity against these cocirculating strains. Therefore, the COBRA vaccines have the ability to elicit protective antibodies against not only the dominant vaccine strains but also minor circulating strains that can evolve into the dominant vaccine strains in the future.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Antivirais/sangue , Desenho Assistido por Computador , Furões , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Vírus da Influenza A Subtipo H3N2/classificação , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Camundongos , Infecções por Orthomyxoviridae/classificação , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem
6.
J Virol ; 91(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978709

RESUMO

Most preclinical animal studies test influenza vaccines in immunologically naive animal models, even though the results of vaccination may not accurately reflect the effectiveness of vaccine candidates in humans that have preexisting immunity to influenza. In this study, novel, broadly reactive influenza vaccine candidates were assessed in preimmune ferrets. These animals were infected with different H1N1 isolates before being vaccinated or infected with another influenza virus. Previously, our group has described the design and characterization of computationally optimized broadly reactive hemagglutinin (HA) antigens (COBRA) for H1N1 isolates. Vaccinating ferrets with virus-like particle (VLP) vaccines expressing COBRA HA proteins elicited antibodies with hemagglutination inhibition (HAI) activity against more H1N1 viruses in the panel than VLP vaccines expressing wild-type HA proteins. Specifically, ferrets infected with the 1986 virus and vaccinated with a single dose of the COBRA HA VLP vaccines elicited antibodies with HAI activity against 11 to 14 of the 15 H1N1 viruses isolated between 1934 and 2013. A subset of ferrets was infected with influenza viruses expressing the COBRA HA antigens. These COBRA preimmune ferrets had superior breadth of HAI activity after vaccination with COBRA HA VLP vaccines than COBRA preimmune ferrets vaccinated with VLP vaccines expressing wild-type HA proteins. Overall, priming naive ferrets with COBRA HA based viruses or using COBRA HA based vaccines to boost preexisting antibodies induced by wild-type H1N1 viruses, COBRA HA antigens elicited sera with the broadest HAI reactivity against multiple antigenic H1N1 viral variants. This is the first report demonstrating the effectiveness of a broadly reactive or universal influenza vaccine in a preimmune ferret model.IMPORTANCE Currently, many groups are testing influenza vaccine candidates to meet the challenge of developing a vaccine that elicits broadly reactive and long-lasting protective immune responses. The goal of these vaccines is to stimulate immune responses that react against most, if not all, circulating influenza strains, over a long period of time in all populations of people. Commonly, these experimental vaccines are tested in naive animal models that do not have anti-influenza immune responses; however, humans have preexisting immunity to influenza viral antigens, particularly antibodies to the HA and NA glycoproteins. Therefore, this study investigated how preexisting antibodies to historical influenza viruses influenced HAI-specific antibodies and protective efficacy using a broadly protective vaccine candidate.


Assuntos
Anticorpos Antivirais/biossíntese , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Furões , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia
7.
J Virol ; 90(2): 1116-28, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26559834

RESUMO

UNLABELLED: Broadly reactive antibodies targeting the conserved hemagglutinin (HA) stalk region are elicited following sequential infection or vaccination with influenza viruses belonging to divergent subtypes and/or expressing antigenically distinct HA globular head domains. Here, we demonstrate, through the use of novel chimeric HA proteins and competitive binding assays, that sequential infection of ferrets with antigenically distinct seasonal H1N1 (sH1N1) influenza virus isolates induced an HA stalk-specific antibody response. Additionally, stalk-specific antibody titers were boosted following sequential infection with antigenically distinct sH1N1 isolates in spite of preexisting, cross-reactive, HA-specific antibody titers. Despite a decline in stalk-specific serum antibody titers, sequential sH1N1 influenza virus-infected ferrets were protected from challenge with a novel H1N1 influenza virus (A/California/07/2009), and these ferrets poorly transmitted the virus to naive contacts. Collectively, these findings indicate that HA stalk-specific antibodies are commonly elicited in ferrets following sequential infection with antigenically distinct sH1N1 influenza virus isolates lacking HA receptor-binding site cross-reactivity and can protect ferrets against a pathogenic novel H1N1 virus. IMPORTANCE: The influenza virus hemagglutinin (HA) is a major target of the humoral immune response following infection and/or seasonal vaccination. While antibodies targeting the receptor-binding pocket of HA possess strong neutralization capacities, these antibodies are largely strain specific and do not confer protection against antigenic drift variant or novel HA subtype-expressing viruses. In contrast, antibodies targeting the conserved stalk region of HA exhibit broader reactivity among viruses within and among influenza virus subtypes. Here, we show that sequential infection of ferrets with antigenically distinct seasonal H1N1 influenza viruses boosts the antibody responses directed at the HA stalk region. Moreover, ferrets possessing HA stalk-specific antibody were protected against novel H1N1 virus infection and did not transmit the virus to naive contacts.


Assuntos
Anticorpos Antivirais/sangue , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Animais , Peso Corporal , Proteção Cruzada , Modelos Animais de Doenças , Feminino , Furões , Cavidade Nasal/virologia , Infecções por Orthomyxoviridae/prevenção & controle , Carga Viral
8.
J Virol ; 90(9): 4720-4734, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26912624

RESUMO

UNLABELLED: One of the challenges of developing influenza A vaccines is the diversity of antigenically distinct isolates. Previously, a novel hemagglutinin (HA) for H5N1 influenza was derived from a methodology termed computationally optimized broadly reactive antigen (COBRA). This COBRA HA elicited a broad antibody response against H5N1 isolates from different clades. We now report the development and characterization of a COBRA-based vaccine for both seasonal and pandemic H1N1 influenza virus isolates. Nine prototype H1N1 COBRA HA proteins were developed and tested in mice using a virus-like particle (VLP) format for the elicitation of broadly reactive, functional antibody responses and protection against viral challenge. These candidates were designed to recognize H1N1 viruses isolated within the last 30 years. In addition, several COBRA candidates were designed based on sequences of H1N1 viruses spanning the past 100 years, including modern pandemic H1N1 isolates. Four of the 9 H1N1 COBRA HA proteins (X1, X3, X6, and P1) had the broadest hemagglutination inhibition (HAI) activity against a panel of 17 H1N1 viruses. These vaccines were used in cocktails or prime-boost combinations. The most effective regimens that both elicited the broadest HAI response and protected mice against a pandemic H1N1 challenge were vaccines that contained the P1 COBRA VLP and either the X3 or X6 COBRA VLP vaccine. These mice had little or no detectable viral replication, comparable to that observed with a matched licensed vaccine. This is the first report describing a COBRA-based HA vaccine strategy that elicits a universal, broadly reactive, protective response against seasonal and pandemic H1N1 isolates. IMPORTANCE: Universal influenza vaccine approaches have the potential to be paradigm shifting for the influenza vaccine field, with the goal of replacing the current standard of care with broadly cross-protective vaccines. We have used COBRA technology to develop an HA head-based strategy that elicits antibodies against many H1 strains that have undergone genetic drift and has potential as a "subtype universal" vaccine. Nine HA COBRA candidates were developed, and these vaccines were used alone, in cocktails or in prime-boost combinations. The most effective regimens elicited the broadest hemagglutination inhibition (HAI) response against a panel of H1N1 viruses isolated over the past 100 years. This is the first report describing a COBRA-based HA vaccine strategy that elicits a broadly reactive response against seasonal and pandemic H1N1 isolates.


Assuntos
Antígenos Virais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Antígenos Virais/química , Antígenos Virais/genética , Linhagem Celular , Modelos Animais de Doenças , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Imunização , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/ultraestrutura , Influenza Humana/prevenção & controle , Camundongos , Modelos Moleculares , Infecções por Orthomyxoviridae/prevenção & controle , Filogenia , Ligação Proteica/imunologia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Vacinas de Partículas Semelhantes a Vírus/imunologia
9.
Proc Natl Acad Sci U S A ; 111(44): 15798-803, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25331901

RESUMO

Influenza viruses typically cause the most severe disease in children and elderly individuals. However, H1N1 viruses disproportionately affected middle-aged adults during the 2013-2014 influenza season. Although H1N1 viruses recently acquired several mutations in the hemagglutinin (HA) glycoprotein, classic serological tests used by surveillance laboratories indicate that these mutations do not change antigenic properties of the virus. Here, we show that one of these mutations is located in a region of HA targeted by antibodies elicited in many middle-aged adults. We find that over 42% of individuals born between 1965 and 1979 possess antibodies that recognize this region of HA. Our findings offer a possible antigenic explanation of why middle-aged adults were highly susceptible to H1N1 viruses during the 2013-2014 influenza season. Our data further suggest that a drifted H1N1 strain should be included in future influenza vaccines to potentially reduce morbidity and mortality in this age group.


Assuntos
Antígenos Virais/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/genética , Mutação , Adulto , Animais , Antígenos Virais/imunologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza , Influenza Humana/imunologia , Influenza Humana/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade
10.
J Virol ; 88(6): 3077-91, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24371072

RESUMO

UNLABELLED: Seasonal influenza causes substantial morbidity and mortality because of efficient human-to-human spread. Rarely, zoonotic strains of influenza virus spread to humans, where they have the potential to mediate new pandemics with high mortality. We studied systemic viral spread after intranasal infection with highly pathogenic avian influenza virus (H5N1 [A/Viet Nam/1203/2004]) in ferrets with or without prior pandemic H1N1pdm09 (A/Mexico/4108/2009) or H3N2 (A/Victoria/361/2011) infection. After intranasal challenge with H5N1 influenza virus, naive ferrets rapidly succumbed to systemic infection. Animals challenged with H5N1 influenza virus greater than 3 months after recovering from an initial H1N1pdm09 infection survived H5N1 virus challenge and cleared virus from the respiratory tract 4 days after infection. However, a prolonged low-level infection of hematopoietic elements in the small bowel lamina propria, liver, and spleen was present for greater than 2 weeks postinfection, raising the potential for reassortment of influenza genes in a host infected with multiple strains of influenza. Animals previously infected with an H3N2 influenza virus succumbed to systemic disease and encephalitis after H5N1 virus challenge. These results indicate prior infection with different seasonal influenza strains leads to radically different protection from H5N1 challenge and fatal encephalitis. IMPORTANCE: Seasonal influenza is efficiently transmitted from human to human, causing substantial morbidity and mortality. Rarely, zoonotic strains of influenza virus spread to humans, where they have the potential to mediate new pandemics with high mortality. Infection of naive ferrets with H5N1 avian influenza virus causes a rapid and lethal systemic disease. We studied systemic H5N1 viral spread after infection of ferrets with or without prior exposure to either of two seasonal influenza virus strains, H1N1 and H3N2. Ferrets previously infected with H1N1 survive H5N1 challenge while those previously infected with H3N2 die of encephalitis. However ferrets protected from lethal H5N1 infection develop persistent low-level infection of the small intestine, liver, or spleen, providing a nidus for future viral strain recombination. The mechanism by which prior infection with specific strains of seasonal influenza virus protect from lethal H5N1 challenge needs to be elucidated in order to design effective immunization and treatments.


Assuntos
Encefalite/prevenção & controle , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Humana/complicações , Influenza Humana/virologia , Animais , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Encefalite/etiologia , Encefalite/imunologia , Encefalite/virologia , Feminino , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia
11.
J Virol ; 87(3): 1400-10, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23115287

RESUMO

Individuals <60 years of age had the lowest incidence of infection, with ~25% of these people having preexisting, cross-reactive antibodies to novel 2009 H1N1 influenza. Many people >60 years old also had preexisting antibodies to novel H1N1. These observations are puzzling because the seasonal H1N1 viruses circulating during the last 60 years were not antigenically similar to novel H1N1. We therefore hypothesized that a sequence of exposures to antigenically different seasonal H1N1 viruses can elicit an antibody response that protects against novel 2009 H1N1. Ferrets were preinfected with seasonal H1N1 viruses and assessed for cross-reactive antibodies to novel H1N1. Serum from infected ferrets was assayed for cross-reactivity to both seasonal and novel 2009 H1N1 strains. These results were compared to those of ferrets that were sequentially infected with H1N1 viruses isolated prior to 1957 or more-recently isolated viruses. Following seroconversion, ferrets were challenged with novel H1N1 influenza virus and assessed for viral titers in the nasal wash, morbidity, and mortality. There was no hemagglutination inhibition (HAI) cross-reactivity in ferrets infected with any single seasonal H1N1 influenza viruses, with limited protection to challenge. However, sequential H1N1 influenza infections reduced the incidence of disease and elicited cross-reactive antibodies to novel H1N1 isolates. The amount and duration of virus shedding and the frequency of transmission following novel H1N1 challenge were reduced. Exposure to multiple seasonal H1N1 influenza viruses, and not to any single H1N1 influenza virus, elicits a breadth of antibodies that neutralize novel H1N1 even though the host was never exposed to the novel H1N1 influenza viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Animais , Anticorpos Antivirais/sangue , Reações Cruzadas , Modelos Animais de Doenças , Furões , Testes de Inibição da Hemaglutinação , Cavidade Nasal/virologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/patologia , Análise de Sobrevida , Carga Viral , Eliminação de Partículas Virais
12.
J Virol ; 86(10): 5515-22, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22379097

RESUMO

The H1N1 2009 influenza virus (H1N1pdm09) pandemic had several unexpected features, including low morbidity and mortality in older populations. We performed in-depth evaluation of antibody responses generated following H1N1pdm09 infection of naïve ferrets and of 130 humans ranging from the very young (0 to 9 years old) to the very old (70 to 89 years old). In addition to hemagglutination inhibition (HI) titers, we used H1N1pdm09 whole-genome-fragment phage display libraries (GFPDL) to evaluate the antibody repertoires against internal genes, hemagglutinin (HA), and neuraminidase (NA) and also measured antibody affinity for antigenic domains within HA. GFPDL analyses of H1N1pdm09-infected ferrets demonstrated gradual development of antibody repertoires with a focus on M1 and HA1 by day 21 postinfection. In humans, H1N1pdm09 infection in the elderly (>70 years old) induced antibodies with broader epitope recognition in both the internal genes and the HA1 receptor binding domain (RBD) than for the younger age groups (0 to 69 years). Importantly, post-H1N1 infection serum antibodies from the elderly demonstrated substantially higher avidity for recombinant HA1 (rHA1) (but not HA2) than those from younger subjects (50% versus <22% 7 M urea resistance, respectively) and lower antibody dissociation rates using surface plasmon resonance. This is the first study in humans that provides evidence for a qualitatively superior antibody response in the elderly following H1N1pdm09 infection, indicative of recall of long-term memory B cells or long-lived plasma cells. These findings may help explain the age-related morbidity and mortality pattern observed during the H1N1pdm09 pandemic.


Assuntos
Anticorpos Antivirais/imunologia , Afinidade de Anticorpos , Diversidade de Anticorpos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , Feminino , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Lactente , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Estrutura Terciária de Proteína , Adulto Jovem
13.
J Virol ; 86(22): 12283-93, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22951833

RESUMO

Recombinant hemagglutinin from influenza viruses with pandemic potential can be produced rapidly in various cell substrates. In this study, we compared the functionality and immunogenicity of bacterially produced oligomeric or monomeric HA1 proteins from H5N1 (A/Vietnam/1203/04) with those of the egg-based licensed subunit H5N1 (SU-H5N1) vaccine in ferrets challenged with homologous or heterologous H5N1 highly pathogenic influenza strains. Ferrets were vaccinated twice with the oligomeric or monomeric rHA1 or with SU-H5N1 (Sanofi Pasteur) emulsified with Titermax adjuvant and were challenged with wild-type homologous (A/Vietnam/1203/04; clade 1) or heterologous (A/Whooperswan/Mongolia/244/2005; clade 2.2) virus. Only the oligomeric rHA1 (not the monomeric rHA1) immunogen and the SU-H5N1 vaccine provided protection against the lethality and morbidity of homologous and heterologous highly pathogenic H5N1. Oligomeric rHA1 generated more cross-neutralizing antibodies and higher levels of serum antibody binding to HA1, with stronger avidity and a better IgG/IgM ratio, than monomeric HA1 and SU-H5N1 vaccines, as determined by surface plasmon resonance (SPR). Importantly, viral loads after heterologous H5N1 challenge were more efficiently controlled in ferrets vaccinated with the oligomeric rHA1 immunogen than in SU-H5N1-vaccinated ferrets. The reduction of viral loads in the nasal washes correlated strongly with higher-avidity antibodies to oligomeric rHA1 derived from H5N1 clade 1 and clade 2.2 viruses, as measured by SPR. This is the first study to show the role of antibody avidity for the HA1 globular head domain in reduction of viral loads in the upper respiratory tract, which could significantly reduce viral transmission.


Assuntos
Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/virologia , Proteínas Recombinantes/química , Animais , Anticorpos Neutralizantes/química , Cromatografia em Gel , DNA Complementar/metabolismo , Eritrócitos/virologia , Escherichia coli/metabolismo , Furões , Hemaglutinação , Humanos , Imunoglobulina G/química , Imunoglobulina M/química , Vacinas contra Influenza/imunologia , Testes de Neutralização , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Sistema Respiratório/virologia , Ressonância de Plasmônio de Superfície , Carga Viral
14.
J Infect Dis ; 205(10): 1562-70, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22448011

RESUMO

BACKGROUND: Highly pathogenic H5N1 avian influenza viruses continue to spread via waterfowl, causing lethal infections in humans. Vaccines can prevent the morbidity and mortality associated with pandemic influenza isolates. Predicting the specific isolate that may emerge from the 10 different H5N1 clades is a tremendous challenge for vaccine design. METHODS: In this study, we generated a synthetic hemagglutinin (HA) on the basis of a new method, computationally optimized broadly reactive antigen (COBRA), which uses worldwide sequencing and surveillance efforts that are specifically focused on sequences from H5N1 clade 2 human isolates. RESULTS: Cynomolgus macaques vaccinated with COBRA clade 2 HA H5N1 virus-like particles (VLPs) had hemagglutination-inhibition antibody titers that recognized a broader number of representative isolates from divergent clades as compared to nonhuman primates vaccinated with clade 2.2 HA VLPs. Furthermore, all vaccinated animals were protected from A/Whooper Swan/Mongolia/244/2005 (WS/05) clade 2.2 challenge, with no virus detected in the nasal or tracheal washes. However, COBRA VLP-vaccinated nonhuman primates had reduced lung inflammation and pathologic effects as compared to those that received WS/05 VLP vaccines. CONCLUSIONS: The COBRA clade 2 HA H5N1 VLP elicits broad humoral immunity against multiple H5N1 isolates from different clades. In addition, the COBRA VLP vaccine is more effective than a homologous vaccine against a highly pathogenic avian influenza virus challenge.


Assuntos
Anticorpos Antivirais/sangue , Hemaglutininas Virais/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Infecções por Orthomyxoviridae/prevenção & controle , Sequência de Aminoácidos , Animais , Antígenos Virais/imunologia , Linhagem Celular Transformada , Desenho Assistido por Computador , Sequência Consenso , Modelos Animais de Doenças , Hemaglutininas Virais/química , Humanos , Influenza Humana/imunologia , Influenza Humana/virologia , Funções Verossimilhança , Pulmão/virologia , Macaca fascicularis , Masculino , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Filogenia , Vacinação , Vacinas de Partículas Semelhantes a Vírus/imunologia
15.
J Virol ; 85(3): 1246-56, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21084473

RESUMO

The impending influenza virus pandemic requires global vaccination to prevent large-scale mortality and morbidity, but traditional influenza virus vaccine production is too slow for rapid responses. We have developed bacterial systems for expression and purification of properly folded functional hemagglutinin as a rapid response to emerging pandemic strains. A recombinant H5N1 (A/Vietnam/1203/2004) hemagglutinin globular domain (HA1) was produced in Escherichia coli under controlled redox refolding conditions. Importantly, the properly folded HA1(1-320), i.e., HA1 lacking amino acids 321 to 330, contained ≥75% functional oligomers without addition of foreign oligomerization sequence. Site-directed mutagenesis mapped the oligomerization signal to the HA1 N-terminal Ile-Cys-Ile residues at positions 3 to 5. The purified HA1 oligomers (but not monomers) bound fetuin and agglutinated red blood cells. Upon immunization of rabbits, the oligomeric HA1(1-320) elicited potent neutralizing antibodies against homologous and heterologous H5N1 viruses more rapidly than HA1(28-320) containing only monomers. Ferrets vaccinated with oligomeric HA1 (but not monomeric HA1 with the N terminus deleted) at 15 and 3 µg/dose were fully protected from lethality and weight loss after challenge with homologous H5N1 (A/Vietnam/1203/2004, clade 1) virus, as well as heterologous clade 2.2 H5N1 (A/WooperSwan/Mongolia/244/2005) virus. Protection was associated with a significant reduction in viral loads in the nasal washes of homologous and heterologous virus challenged ferrets. This is the first study that describes the presence of an N-terminal oligomerization sequence in the globular domain of influenza virus hemagglutinin. Our findings suggest that functional oligomeric rHA1-based vaccines can be produced efficiently in bacterial systems and can be easily upscaled in response to a pandemic influenza virus threat.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Escherichia coli/genética , Feminino , Furões , Vetores Genéticos , Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/isolamento & purificação , Virus da Influenza A Subtipo H5N1/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Vacinas contra Influenza/isolamento & purificação , Mucosa Nasal/virologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/prevenção & controle , Ligação Proteica , Multimerização Proteica , Coelhos , Análise de Sobrevida , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação , Carga Viral , alfa-Fetoproteínas/metabolismo
16.
J Allergy Clin Immunol ; 127(1): 130-7, 137.e1-3, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21145578

RESUMO

BACKGROUND: Asthma was the most common comorbidity of patients hospitalized with 2009 H1N1 influenza. OBJECTIVE: We sought to assess the immunogenicity and safety of an unadjuvanted, inactivated 2009 H1N1 vaccine in patients with severe versus mild-to-moderate asthma. METHODS: We conducted an open-label study involving 390 participants (age, 12-79 years) enrolled in October-November 2009. Severe asthma was defined as need for 880 µg/d or more of inhaled fluticasone equivalent, systemic corticosteroids, or both. Within each severity group, participants were randomized to receive intramuscularly 15 or 30 µg of 2009 H1N1 vaccine twice 21 days apart. Immunogenicity end points were seroprotection (hemagglutination inhibition assay titer ≥40) and seroconversion (4-fold or greater titer increase). Safety was assessed through local and systemic reactogenicity, asthma exacerbations, and pulmonary function. RESULTS: In patients with mild-to-moderate asthma (n = 217), the 2009 H1N1 vaccine provided equal seroprotection 21 days after the first immunization at the 15-µg (90.6%; 95% CI, 83.5% to 95.4%) and 30-µg (95.3%; 95% CI, 89.4% to 98.5%) doses. In patients with severe asthma (n = 173), seroprotection 21 days after the first immunization was 77.9% (95% CI, 67.7% to 86.1%) and 94.1% (95% CI, 86.8% to 98.1%) at the 15- and 30-µg doses, respectively (P = .004). The second vaccination did not provide further increases in seroprotection. Participants with severe asthma who are older than 60 years showed the lowest seroprotection (44.4% at day 21) with the 15-µg dose but had adequate seroprotection with 30 µg. The 2 dose groups did not differ in seroconversion rates. There were no safety concerns. CONCLUSION: Monovalent inactivated 2009 H1N1 pandemic influenza vaccine was safe and provided overall seroprotection as a surrogate of efficacy. In patients older than 60 years with severe asthma, a 30-µg dose might be more appropriate.


Assuntos
Asma/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Adolescente , Adulto , Idoso , Asma/epidemiologia , Criança , Comorbidade , Feminino , Humanos , Influenza Humana/imunologia , Masculino , Pessoa de Meia-Idade , Vacinação , Adulto Jovem
17.
Virol J ; 7: 95, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20462412

RESUMO

Antibodies generated against West Nile virus (WNV) during infection are essential for controlling dissemination. Recent studies have demonstrated that epitopes in all three domains of the flavivirus envelope protein (E) are targets for neutralizing antibodies, with determinants in domain III (DIII) eliciting antibodies with strong inhibitory properties. In order to increase the magnitude and quality of the antibody response against the WNV E protein, DNA vaccines with derivatives of the WNV E gene (full length E, truncated E, or DIII region, some in the context of the pre-membrane [prM] gene) were conjugated to the molecular adjuvant P28. The P28 region of the complement protein C3d is the minimum CR2-binding domain necessary for the adjuvant activity of C3d. Delivery of DNA-based vaccines by gene gun and intramuscular routes stimulated production of IgG antibodies against the WNV DIII region of the E protein. With the exception of the vaccine expressing prM/E given intramuscularly, only mice that received DNA vaccines by gene gun produced protective neutralizing antibody titers (FRNT80 titer >1/40). Correspondingly, mice vaccinated by the gene gun route were protected to a greater level from lethal WNV challenge. In general, mice vaccinated with P28-adjuvated vaccines produced higher IgG titers than mice vaccinated with non-adjuvanted vaccines.


Assuntos
Complemento C3d/química , Complemento C3d/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Febre do Nilo Ocidental/imunologia , Febre do Nilo Ocidental/prevenção & controle , Vírus do Nilo Ocidental/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Complemento C3d/administração & dosagem , Complemento C3d/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Terciária de Proteína , Células Vero , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/imunologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/química , Vírus do Nilo Ocidental/genética
18.
Hum Vaccin Immunother ; 15(9): 2013-2029, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31448974

RESUMO

Swine H1 influenza viruses were stable within pigs for nearly 70 years until in 1998 when a classical swine virus reassorted with avian and human influenza viruses to generate the novel triple reassortant H1N1 strain that eventually led to the 2009 influenza pandemic. Previously, our group demonstrated broad protection against a panel of human H1N1 viruses using HA antigens derived by the COBRA methodology. In this report, the effectiveness of COBRA HA antigens (SW1, SW2, SW3 and SW4), which were designed using only HA sequences from swine H1N1 and H1N2 isolates, were tested in BALB/c mice. The effectiveness of these vaccines were compared to HA sequences designed using both human and swine H1 HA sequences or human only sequences. SW2 and SW4 elicited antibodies that detected the pandemic-like virus, A/California/07/2009 (CA/09), had antibodies with HAI activity against almost all the classical swine influenza viruses isolated from 1973-2015 and all of the Eurasian viruses in our panel. However, sera collected from mice vaccinated with SW2 or SW4 had HAI activity against ~25% of the human seasonal-like influenza viruses isolated from 2009-2015. In contrast, the P1 COBRA HA vaccine (derived from both swine and human HA sequences) elicited antibodies that had HAI activity against both swine and human H1 viruses and protected against CA/09 challenge, but not a human seasonal-like swine H1N2 virus challenge. However, the SW1 vaccine protected against this challenge as well as the homologous vaccine. These results support the idea that a pan-swine-human H1 influenza virus vaccine is possible.


Assuntos
Anticorpos Antivirais/sangue , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Computadores Moleculares , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza/administração & dosagem , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Suínos , Vacinas de Partículas Semelhantes a Vírus/imunologia
19.
Vaccine ; 35(38): 5209-5216, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28789850

RESUMO

A number of challenges for developing a protective pre-pandemic influenza A vaccine exists including predicting the target influenza strain and designing the vaccine for an immunologically naïve population. Manufacturing and supply of the vaccine would also require implementing ways to increase coverage for the largest number of people through dose-sparing methods, while not compromising the potency of the vaccine. Previously, our group described a novel hemagglutinin (HA) for H5N1 influenza derived from a methodology termed computationally optimized broadly reactive antigen (COBRA). This report describes a strategy combining a COBRA-based HA vaccine with an oil-in-water emulsion, resulting in a dose-sparing, immunologically broadened, and protective response against multiple H5N1 isolates. Here, we show that an emulsion-based adjuvant enhances the magnitude and breadth of antibody responses with both a wild-type H5HA (H5N1 WT) and the H5N1 COBRA HA VLP vaccines. The H5N1 COBRA HA VLP, combined with an emulsion adjuvant, elicited HAI specific antibodies against a larger panel of H5N1 viruses that resulted in protection against challenge as efficiently as the homologous, matched vaccine.


Assuntos
Vacinas contra Influenza/uso terapêutico , Animais , Emulsões , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vacinação/métodos
20.
Hum Vaccin Immunother ; 11(3): 572-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25671661

RESUMO

Pandemic outbreaks of influenza are caused by the emergence of a pathogenic and transmissible virus to which the human population is immunologically naïve. Recent outbreaks of highly pathogenic avian influenza (HPAI) of the H5N1 subtype are of particular concern because of the high mortality rate (60% case fatality rate) and novel subtype. In this study, we have engineered an influenza virus-like particle (VLP) that contains a synthetic, consensus-based HA molecule using a new methodology, computationally optimized broadly reactive antigen (COBRA). Three COBRA H5N1 HA proteins have been engineered based upon (1) human clade 2 H5N1 sequences, (2) human and avian clade 2 sequences, and (3) all H5N1 influenza sequences recorded between 2005-2008. Each hemagglutinin protein retained the ability to bind the appropriate receptors, as well as the ability to mediate particle fusion, following purification from a mammalian expression system. COBRA VLP vaccines were administered to mice and the humoral immune responses were compared to those induced by VLPs containing an HA derived from a primary viral isolate. Using a single vaccination (0.6 ug HA dose with an adjuvant) all animals vaccinated with COBRA clade 2 HA H5N1 VLPs had protective levels of HAI antibodies to a representative isolate from each subclade of clade 2, but lower titers against other clades. The addition of avian sequences from other clades expanded breadth of HAI antibodies to the divergent clades, but still not all of the 25 H5N1 viruses in the panel were recognized by antibodies elicited any one H5N1 COBRA VLP vaccine. Vaccination of mice with a cocktail of all 3 COBRA HA VLP vaccines, in a prime-boost regimen, elicited an average HAI titer greater than 1:40 against all 25 viruses. Collectively, our findings indicate that the elicited antibody response following VLP vaccination with all 3 COBRA HA vaccine simultaneously elicited a broadly-reactive set of antibodies that recognized H5N1 viruses from 11 H5N1 clades/subclades isolated over a 12-year span.


Assuntos
Anticorpos Antivirais/sangue , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Vacinação/métodos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Desenho de Fármacos , Feminino , Vacinas contra Influenza/administração & dosagem , Camundongos Endogâmicos BALB C , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA