Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Genes Dev ; 37(7-8): 303-320, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37024284

RESUMO

MYC's key role in oncogenesis and tumor progression has long been established for most human cancers. In melanoma, its deregulated activity by amplification of 8q24 chromosome or by upstream signaling coming from activating mutations in the RAS/RAF/MAPK pathway-the most predominantly mutated pathway in this disease-turns MYC into not only a driver but also a facilitator of melanoma progression, with documented effects leading to an aggressive clinical course and resistance to targeted therapy. Here, by making use of Omomyc, the most characterized MYC inhibitor to date that has just successfully completed a phase I clinical trial, we show for the first time that MYC inhibition in melanoma induces remarkable transcriptional modulation, resulting in severely compromised tumor growth and a clear abrogation of metastatic capacity independently of the driver mutation. By reducing MYC's transcriptional footprint in melanoma, Omomyc elicits gene expression profiles remarkably similar to those of patients with good prognosis, underlining the therapeutic potential that such an approach could eventually have in the clinic in this dismal disease.


Assuntos
Melanoma , Humanos , Prognóstico , Melanoma/genética , Transdução de Sinais , Carcinogênese , Transformação Celular Neoplásica , Proteínas Proto-Oncogênicas c-myc/metabolismo
2.
Hepatology ; 68(2): 691-706, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29420849

RESUMO

MicroRNA 155 (miR-155) is involved in immune and inflammatory diseases and is associated with liver fibrosis and steatohepatitis. However, the mechanisms involved in miR-155 regulation of liver injury are largely unknown. The role of miR-155 in acute liver injury was assessed in wild-type (WT), miR-155-/- , and miR-155-/- mice transplanted with WT bone marrow. Additionally, miR-155 expression was evaluated in liver tissue and peripheral blood mononuclear cells of patients with autoimmune hepatitis. Concanavalin A, but not acetaminophen, treatment increased the expression of miR-155 in liver tissue of WT mice. Concanavalin A induced increases in cell death, liver aminotransferases, and expression of proinflammatory cytokines (chemokine [C-X-C motif] ligands 1, 5, 9, 10, and 11; chemokine [C-C motif] ligands 2 and 20; and intercellular cell adhesion molecule 1) in miR-155-/- compared to WT mice. Importantly, these animals showed a significant decrease in cluster of differentiation 4-positive/chemokine (C-X-C motif) receptor 3-positive and forkhead box p3-positive cell recruitment but no changes in other inflammatory cell populations. Mechanistically, miR-155-deficient regulatory T cells showed increased SH2 domain-containing inositol 5-phosphatase 1 expression, a known target of miR-155. Inhibition of SH2 domain-containing inositol 5-phosphatase 1 in miR-155-/- mice restored forkhead box p3 recruitment and reduced liver cytokine expression. Transplantation of bone marrow from WT animals into miR-155-/- mice partially reversed the effect of concanavalin A on miR-155-/- mice as assessed by proinflammatory cytokines and cell death protein expression. Patients with autoimmune hepatitis showed a marked increase in miR-155 expression in the liver but reduced expression of miR-155 in peripheral blood mononuclear cells. CONCLUSION: miR-155 expression is altered in both liver tissue and circulating inflammatory cells during liver injury, thus regulating inflammatory cell recruitment and liver damage; these results suggest that maintaining miR-155 expression in inflammatory cells might be a potential strategy to modulate liver injury. (Hepatology 2018).


Assuntos
Hepatite Autoimune/metabolismo , Hepatopatias/metabolismo , Fígado/metabolismo , MicroRNAs/metabolismo , Adulto , Idoso , Animais , Concanavalina A/farmacologia , Citocinas/metabolismo , Feminino , Hepatócitos/metabolismo , Humanos , Fígado/patologia , Hepatopatias/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Transdução de Sinais
3.
Immunol Cell Biol ; 95(6): 538-548, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28108746

RESUMO

Myeloid-derived suppressor cells (MDSCs) have an important role in controlling inflammation. As such, they are both a therapeutic target and, based on the administration of ex vivo-generated MDSCs, a therapeutic tool. However, there are relatively few reports describing methods to generate human MDSCs, and most of them rely on cells obtained from peripheral blood monocytes. We investigated alternative approaches to the generation of MDSCs from hematopoietic progenitors and monocytes. Purified CD34+ hematopoietic progenitors from apheresis products and CD14+ cells isolated from buffy coats were cultured in the presence of different combinations of cytokines. The resulting myeloid cell populations were then characterized phenotypically and functionally. Progenitor cells cultured in the presence of SCF+TPO+FLT3-L+GM-CSF+IL-6 gave rise to both monocytic (M)- and granulocytic (G)-MDSCs but production of the latter was partially inhibited by IL-3. M-MDSCs but not G-MDSCs were obtained by culturing peripheral blood monocytes with GM-CSF+IL-6 or GM-CSF+TGF-ß1 for 6 days. CD14 expression was downregulated in the cultured cells. PD-L1 expression at baseline was lower in hematopoietic progenitor cell-derived than in monocyte-derived MDSCs, but was markedly increased in response to stimulation with LPS+IFN-γ. The functionality of the two MDSC subtypes was confirmed in studies of the suppression of allogeneic and mitogen-induced proliferation and by cytokine profiling. Here we describe both the culture conditions that allow the generation of MDSCs and the phenotypical and functional characterization of these cell populations.


Assuntos
Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Monócitos/citologia , Células Supressoras Mieloides/citologia , Biomarcadores , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Citocinas/farmacologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunomodulação/efeitos dos fármacos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Monócitos/imunologia , Monócitos/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
4.
Nat Med ; 30(3): 762-771, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321218

RESUMO

Among the 'most wanted' targets in cancer therapy is the oncogene MYC, which coordinates key transcriptional programs in tumor development and maintenance. It has, however, long been considered undruggable. OMO-103 is a MYC inhibitor consisting of a 91-amino acid miniprotein. Here we present results from a phase 1 study of OMO-103 in advanced solid tumors, established to examine safety and tolerability as primary outcomes and pharmacokinetics, recommended phase 2 dose and preliminary signs of activity as secondary ones. A classical 3 + 3 design was used for dose escalation of weekly intravenous, single-agent OMO-103 administration in 21-day cycles, encompassing six dose levels (DLs). A total of 22 patients were enrolled, with treatment maintained until disease progression. The most common adverse events were grade 1 infusion-related reactions, occurring in ten patients. One dose-limiting toxicity occurred at DL5. Pharmacokinetics showed nonlinearity, with tissue saturation signs at DL5 and a terminal half-life in serum of 40 h. Of the 19 patients evaluable for response, 12 reached the predefined 9-week time point for assessment of drug antitumor activity, eight of those showing stable disease by computed tomography. One patient defined as stable disease by response evaluation criteria in solid tumors showed a 49% reduction in total tumor volume at best response. Transcriptomic analysis supported target engagement in tumor biopsies. In addition, we identified soluble factors that are potential pharmacodynamic and predictive response markers. Based on all these data, the recommended phase 2 dose was determined as DL5 (6.48 mg kg-1).ClinicalTrials.gov identifier: NCT04808362 .


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia
5.
Cancer Res Commun ; 2(2): 110-130, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-36860495

RESUMO

MYC's role in promoting tumorigenesis is beyond doubt, but its function in the metastatic process is still controversial. Omomyc is a MYC dominant negative that has shown potent antitumor activity in multiple cancer cell lines and mouse models, regardless of their tissue of origin or driver mutations, by impacting on several of the hallmarks of cancer. However, its therapeutic efficacy against metastasis has not been elucidated yet. Here we demonstrate for the first time that MYC inhibition by transgenic Omomyc is efficacious against all breast cancer molecular subtypes, including triple-negative breast cancer, where it displays potent antimetastatic properties both in vitro and in vivo. Importantly, pharmacologic treatment with the recombinantly produced Omomyc miniprotein, recently entering a clinical trial in solid tumors, recapitulates several key features of expression of the Omomyc transgene, confirming its clinical applicability to metastatic breast cancer, including advanced triple-negative breast cancer, a disease in urgent need of better therapeutic options. Significance: While MYC role in metastasis has been long controversial, this manuscript demonstrates that MYC inhibition by either transgenic expression or pharmacologic use of the recombinantly produced Omomyc miniprotein exerts antitumor and antimetastatic activity in breast cancer models in vitro and in vivo, suggesting its clinical applicability.


Assuntos
Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linhagem Celular , Ligação Proteica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc
6.
Methods Mol Biol ; 2318: 281-295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34019297

RESUMO

Myc is deregulated in most-if not all-cancers, and it not only promotes tumor progression by inducing cell proliferation but is also responsible for tumor immune evasion. In a nutshell, MYC promotes the development of tumor-associated macrophages, impairs the cellular response to interferons, induces the expression of immunosuppressive molecules, and excludes tumor infiltrating lymphocytes (TILs) from the tumor site. Based on the insights into the role of MYC in promoting and regulating immune evasion by cancer cells, it is of special interest to study the different immune cell populations infiltrating the tumors. MYC inhibition has emerged as a potential new strategy for the treatment of cancer, directly inhibiting tumor progression while also counteracting the immunosuppressive tumor microenvironment, allowing an optimal anti-tumor immune response. Hence, this chapter describes a flow cytometry-based method to study the different immune cell subsets infiltrating the tumor by combining surface, cytoplasmic, and nuclear multicolor protein stainings.


Assuntos
Citometria de Fluxo/métodos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Microambiente Tumoral/imunologia , Proliferação de Células , DNA/genética , Genes myc/genética , Genes myc/fisiologia , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/imunologia , Proteínas Proto-Oncogênicas c-myc/genética , Microambiente Tumoral/fisiologia
7.
Life Sci Alliance ; 4(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33653688

RESUMO

The huge cadre of genes regulated by Myc has obstructed the identification of critical effectors that are essential for Myc-driven tumorigenesis. Here, we describe how only the lack of the receptor Fzd9, previously identified as a Myc transcriptional target, impairs sustained tumor expansion and ß-cell dedifferentiation in a mouse model of Myc-driven insulinoma, allows pancreatic islets to maintain their physiological structure and affects Myc-related global gene expression. Importantly, Wnt signaling inhibition in Fzd9-competent mice largely recapitulates the suppression of proliferation caused by Fzd9 deficiency upon Myc activation. Together, our results indicate that the Wnt signaling receptor Fzd9 is essential for Myc-induced tumorigenesis in pancreatic islets.


Assuntos
Adenoma de Células das Ilhotas Pancreáticas/fisiopatologia , Carcinogênese/metabolismo , Receptores Frizzled/metabolismo , Adenoma de Células das Ilhotas Pancreáticas/metabolismo , Animais , Movimento Celular , Proliferação de Células , Feminino , Receptores Frizzled/genética , Receptores Frizzled/fisiologia , Genes myc/genética , Genes myc/fisiologia , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
8.
Sci Transl Med ; 11(484)2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894502

RESUMO

Inhibiting MYC has long been considered unfeasible, although its key role in human cancers makes it a desirable target for therapeutic intervention. One reason for its perceived undruggability was the fear of catastrophic side effects in normal tissues. However, we previously designed a dominant-negative form of MYC called Omomyc and used its conditional transgenic expression to inhibit MYC function both in vitro and in vivo. MYC inhibition by Omomyc exerted a potent therapeutic impact in various mouse models of cancer, causing only mild, well-tolerated, and reversible side effects. Nevertheless, Omomyc has been so far considered only a proof of principle. In contrast with that preconceived notion, here, we show that the purified Omomyc mini-protein itself spontaneously penetrates into cancer cells and effectively interferes with MYC transcriptional activity therein. Efficacy of the Omomyc mini-protein in various experimental models of non-small cell lung cancer harboring different oncogenic mutation profiles establishes its therapeutic potential after both direct tissue delivery and systemic administration, providing evidence that the Omomyc mini-protein is an effective MYC inhibitor worthy of clinical development.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/farmacocinética , Peptídeos Penetradores de Células/uso terapêutico , DNA/metabolismo , Modelos Animais de Doenças , Elementos E-Box/genética , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/farmacocinética , Fragmentos de Peptídeos/uso terapêutico , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/administração & dosagem , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/farmacocinética , Proteínas Proto-Oncogênicas c-myc/farmacologia , Proteínas Proto-Oncogênicas c-myc/uso terapêutico
10.
Exp Neurol ; 286: 50-60, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27693617

RESUMO

Previous work by our group showed that transferring bone marrow cells transduced with a self-antigen induced immune tolerance and ameliorated experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). We also found that following retroviral transduction of murine bone marrow (BM) cells, the majority of cells generated and transduced were myeloid-derived suppressor cells (MDSCs). Here, we aimed to determine whether purified antigen-expressing MDSCs have similar therapeutic effects than those of unfractionated BM, and to investigate their potential mechanisms. We performed phenotypic and functional analyses in these cells using the same animal model, and we used purified antigen-expressing MDSCs in preventive and therapeutic approaches. These cells exerted therapeutic effects similar to those of BM cells, which depended upon self-antigen expression. The majority of monocytic (M)-MDSCs expressed the immunosuppressive molecule programmed death ligand-1 (PD-L1), CD80, CD86 and MHC class II molecules. Additionally, the animals infused with antigen-expressing cells exhibited lower percentages of activated T cells and higher percentages of B cells with a regulatory phenotype (B220+CD1dhigh CD5+) in the spleen than their respective controls. MDSCs expressing self-antigens, alloantigens or therapeutic transgenes are tolerogenic and can be exploited therapeutically in autoimmune diseases, transplantation and in gene therapy, respectively.


Assuntos
Autoantígenos/uso terapêutico , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/terapia , Células Supressoras Mieloides/fisiologia , Transferência Adotiva , Animais , Apoptose/fisiologia , Células da Medula Óssea/fisiologia , Sistema Nervoso Central/patologia , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Humanos , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/efeitos dos fármacos , Retroviridae/genética , Índice de Gravidade de Doença , Baço/patologia , Canais de Ânion Dependentes de Voltagem
11.
Cell Transplant ; 23(1): 73-85, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23192196

RESUMO

Previous work by our group showed that transferring bone marrow cells transduced with an autoantigen into nonmyeloablated mice with experimental autoimmune encephalomyelitis induced immune tolerance and improved symptoms of the disease. Because this effect occurred in the absence of molecular chimerism, we hypothesized that the cells responsible did not have repopulating ability and that they were not mediating central but peripheral tolerance mechanisms. In the present study, we analyzed the immunophenotype of the cells that are generated in the transduction cultures and we evaluated the immunosuppressive activity of the main cell subpopulations produced. We show that both granulocytic (CD11b(+) Gr-1(hi)) and monocytic (CD11b(+) Gr-1(lo)) myeloid-derived suppressor cells (G- and M-MDSCs, respectively) are generated during standard 4-day γ-retroviral transduction cultures (representing about 25% and 40% of the total cell output, respectively) and that the effectively transduced cells largely consist of these two cell types. A third cell population representing about 15% of the transduced cells did not express CD45 or hematopoietic lineage markers and expressed mesenchymal stromal cell markers. Transduced total bone marrow cells and sorted M-MDSCs expressed arginase and inducible nitric oxide synthase activities, produced reactive oxygen species, and inhibited antigen-induced T-cell proliferation in vitro. Transgene-expressing MDSCs could be exploited therapeutically to induce tolerance in autoimmune diseases and in gene therapy protocols.


Assuntos
Medula Óssea/fisiologia , Medula Óssea/virologia , Células Mieloides/citologia , Retroviridae/genética , Animais , Arginase/metabolismo , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/virologia , Diferenciação Celular/fisiologia , Feminino , Imunofenotipagem , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/citologia , Transdução Genética/métodos
12.
Transl Cancer Res ; 7(Suppl 4): S457-S459, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31579305
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA