RESUMO
The downstream regulatory element antagonist modulator (DREAM) is a multifunctional Ca2+-sensitive protein exerting a dual mechanism of action to regulate several Ca2+-dependent processes. Upon sumoylation, DREAM enters in nucleus where it downregulates the expression of several genes provided with a consensus sequence named dream regulatory element (DRE). On the other hand, DREAM could also directly modulate the activity or the localization of several cytosolic and plasma membrane proteins. In this review, we summarize recent advances in the knowledge of DREAM dysregulation and DREAM-dependent epigenetic remodeling as a central mechanism in the progression of several diseases affecting central nervous system, including stroke, Alzheimer's and Huntington's diseases, amyotrophic lateral sclerosis, and neuropathic pain. Interestingly, DREAM seems to exert a common detrimental role in these diseases by inhibiting the transcription of several neuroprotective genes, including the sodium/calcium exchanger isoform 3 (NCX3), brain-derived neurotrophic factor (BDNF), pro-dynorphin, and c-fos. These findings lead to the concept that DREAM might represent a pharmacological target to ameliorate symptoms and reduce neurodegenerative processes in several pathological conditions affecting central nervous system.
Assuntos
Proteínas Interatuantes com Canais de Kv , Proteínas Repressoras , Proteínas Interatuantes com Canais de Kv/metabolismo , Proteínas Repressoras/genética , Encéfalo/metabolismo , Dinorfinas/metabolismo , Núcleo Celular/metabolismoRESUMO
Sodium/Calcium exchangers are neuronal plasma membrane antiporters which, by coupling Ca2+ and Na+ fluxes across neuronal membranes, play a relevant role in brain ischemia. The most brain-expressed isoform among the members of the K+-dependent Na+/Ca2+ exchanger family, NCKX2, is involved in the progression of the ischemic lesion, since both its knocking-down and its knocking-out worsens ischemic damage. The aim of this study was to elucidate whether NCKX2 functions as an effector in the neuroprotection evoked by ischemic preconditioning. For this purpose, we investigated: (1) brain NCKX2 expression after preconditioning and preconditioning + ischemia; (2) the contribution of AKT and calpain to modulating NCKX2 expression during preconditioning; and (3) the effect of NCKX2 knocking-out on the neuroprotection mediated by ischemic preconditioning. Our results showed that NCKX2 expression increased in those brain regions protected by ischemic preconditioning. These changes were p-AKT-mediated since its inhibition prevented NCKX2 up-regulation. More interestingly, NCKX2 knocking-out significantly prevented the protection exerted by ischemic preconditioning. Overall, our results suggest that NCKX2 plays a fundamental role in the neuroprotective effect mediated by ischemic preconditioning and support the idea that the enhancement of its expression and activity might represent a reasonable strategy to reduce infarct extension after stroke.
Assuntos
Isquemia Encefálica , Precondicionamento Isquêmico , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Humanos , Neuroproteção , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismoRESUMO
Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697.
Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Doenças do Sistema Nervoso/patologia , Neuroglia/fisiologia , Sódio/metabolismo , Animais , Humanos , Transporte de Íons/fisiologia , Transdução de Sinais/fisiologiaRESUMO
The Na(+) /Ca(2+) exchanger NCX3, recently identified as a myelin membrane component, is involved in the regulation of [Ca(2+) ]i during oligodendrocyte maturation. Here NCX3 involvement was studied in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Western blotting and quantitative colocalization studies performed in wild-type ncx3(+/+) mice at different stages of EAE disease showed that NCX3 protein was intensely upregulated during the chronic stage, where it was intensely coexpressed with the oligodendrocyte precursor cells (OPC) marker NG2 and the premyelinating marker CNPase. Moreover, MOG35-55 -immunized mice lacking the ncx3 gene displayed not only a reduced diameter of axons and an intact myelin ring number but also a dramatic decrease in OPC and pre-myelinating cells in the white matter of the spinal cord when compared with ncx3(+/+) . Accordingly, ncx3(-/-) and ncx3(+/-) mutants developed early onset of EAE and more severe clinical symptoms. Interestingly, cytofluorimetric analysis revealed that during the peak stage of the disease, the number of immune T-cell subsets in ncx3(-/-) mice, was not statistically different from that measured in ncx3(+/+) . Our findings demonstrate that knocking-out NCX3 impairs oligodendrocyte response and worsens clinical symptoms in EAE without altering the immune T-cell population. GLIA 2016;64:1124-1137.
Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia , Trocador de Sódio e Cálcio/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antígenos/metabolismo , Axônios/metabolismo , Axônios/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/efeitos adversos , Glicoproteína Mielina-Oligodendrócito/imunologia , Proteínas do Tecido Nervoso/metabolismo , Proteoglicanas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Trocador de Sódio e Cálcio/genética , Medula Espinal/metabolismo , Medula Espinal/patologia , Baço/metabolismo , Baço/patologia , Regulação para Cima/genética , Regulação para Cima/imunologiaRESUMO
MicroRNA (miRNA), by post-transcriptionally regulating the expression of genes involved in stroke response, represents important effectors in stroke pathophysiology. Recently, the 103/107 miRNA family emerged as a possible therapeutic target in stroke, as it controls the expression of sodium calcium exchanger 1, a plasma membrane transporter that plays a fundamental role in stroke pathophysiology. Although the neuroprotective properties of this and other miRNAs are promising, several pharmacokinetic drawbacks remain to be faced for the development of a translatable therapy based on small RNAs in CNS diseases. In the present study, to overcome these limitations, the anti-miRNA103/107 was encapsulated in specific preparations of lipid nanoparticles (LNPs), and their effectiveness was evaluated both in an in vitro model of hypoxia represented by primary neuronal cortical cultures exposed to oxygen and glucose deprivation followed by reoxygenation, and in an in vivo model of stroke obtained in rats exposed to transient occlusion of the middle cerebral artery. The results of the present study demonstrated that the encapsulation of anti-miRNA103/107 in transferrin-conjugated PEG-stabilized LNPs allowed the blood-brain barrier crossing and significantly reduced brain ischemic damage. The present achievements pave the way for the exploitation of a systemic intravenous miRNA delivery strategy in stroke therapy.
RESUMO
Ret receptor tyrosine kinase is the signaling component of the receptor complex for the family ligands of the glial cell line-derived neurotrophic factor (GDNF). Ret is involved in the development of enteric nervous system, of sympathetic, parasympathetic, motor and sensory neurons, and it is necessary for the post-natal maintenance of dopaminergic neurons. Ret expression has been as well demonstrated on microglia and several evidence indicate that GDNF regulates not only neuronal survival and maturation but also certain functions of microglia in the brain. Here, we demonstrated that the plant lectin Griffonia (Bandeiraea) simplicifolia lectin I, isolectin B4 (IB4), commonly used as a microglial marker in the brain, binds to the glycosylated extracellular domain of Ret on the surface of living NIH3T3 fibroblasts cells stably transfected with Ret as well as in adult rat brain as revealed by immunoblotting. Furthermore, confocal immunofluorescence analysis demonstrated a clear overlap in staining between pRet and IB4 in primary microglia cultures as well as in adult rat sections obtained from control or post-ischemic brain after permanent middle artery occlusion (pMCAO). Interestingly, IB4 staining identified activated or ameboid Ret-expressing microglia under ischemic conditions. Collectively, our data indicate Ret receptor as one of the IB4-reactive glycoconjugate accounting for the IB4 stain in microglia under physiological and ischemic conditions.
Assuntos
Isquemia Encefálica/metabolismo , Microglia/metabolismo , Lectinas de Plantas/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Animais , Animais Recém-Nascidos , Isquemia Encefálica/patologia , Linhagem Celular Tumoral , Córtex Cerebral/citologia , Imunofluorescência , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , Camundongos , Microglia/citologia , Neoplasia Endócrina Múltipla Tipo 2a , Neoplasia Endócrina Múltipla Tipo 2b , Células NIH 3T3 , Lectinas de Plantas/farmacologia , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologiaRESUMO
The Na(+)-Ca(2+) exchanger 1 (NCX1), a bidirectional transporter that mediates the electrogenic exchange of one calcium ion for three sodium ions across the plasma membrane, is known to be involved in brain ischemia. Since the RE1-silencing transcription factor (REST) is a key modulator of neuronal gene expression in several neurological conditions, we studied the possible involvement of REST in regulating NCX1 gene expression and activity in stroke. We found that: (1) REST binds in a sequence specific manner and represses through H4 deacetylation, ncx1 gene in neuronal cells by recruting CoREST, but not mSin3A. (2) In neurons and in SH-SY5Y cells REST silencing by siRNA and site-direct mutagenesis of REST consensus sequence on NCX1 brain promoter determined an increase in NCX1 promoter activity. (3) By contrast, REST overexpression caused a reduction in NCX1 protein expression and activity. (4) Interestingly, in rats subjected to transient middle cerebral artery occlusion (tMCAO) and in organotypic hippocampal slices or SH-SY5Y cells exposed to oxygen and glucose deprivation (OGD) plus reoxygenation (RX), the increase in REST was associated with a decrease in NCX1. However, this reduction was reverted by REST silencing. (5) REST knocking down, along with the deriving NCX1 overexpression in the deep V and VIb cortical layers caused a marked reduction in infarct volume after tMCAO. Double silencing of REST and NCX1 completely abolished neuroprotection induced by siREST administration. Collectively, these results demonstrate that REST, by regulating NCX1 expression, may represent a potential druggable target for the treatment of brain ischemia.
Assuntos
Isquemia Encefálica/genética , Regulação da Expressão Gênica/genética , Neurônios/metabolismo , Proteínas Repressoras/genética , Trocador de Sódio e Cálcio/genética , Animais , Sequência de Bases , Western Blotting , Isquemia Encefálica/metabolismo , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Imunofluorescência , Hipocampo/metabolismo , Humanos , Microscopia Confocal , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/metabolismo , Trocador de Sódio e Cálcio/metabolismo , TransfecçãoRESUMO
The initiation of microglial responses to the ischemic injury involves modifications of calcium homeostasis. Changes in [Ca(2+)](i) levels have also been shown to influence the developmental processes that accompany the transition of human oligodendrocyte precursor cells (OPCs) into mature myelinating oligodendrocytes and are required for the initiation of myelination and remyelination processes.We investigated the regional and temporal changes of NCX1 protein in microglial cells of the peri-infarct and core regions after permanent middle cerebral artery occlusion (pMCAO). Interestingly, 3 and 7 days after pMCAO, NCX1 signal strongly increased in the round-shaped microglia invading the infarct core. Cultured microglial cells from the core displayed increased NCX1 expression as compared with contralateral cells and showed enhanced NCX activity in the reverse mode of operation. Similarly, NCX activity and NCX1 protein expression were significantly enhanced in BV2 microglia exposed to oxygen and glucose deprivation, whereas NCX2 and NCX3 were downregulated. Interestingly, in NCX1-silenced cells, [Ca(2+)](i) increase induced by hypoxia was completely prevented. The upregulation of NCX1 expression and activity observed in microglia after pMCAO suggests a relevant role of NCX1 in modulating microglia functions in the postischemic brain.Next, we explored whether calcium signals mediated by NCX1, NCX2, or NCX3 play a role in oligodendrocyte maturation. Functional studies, as well as mRNA and protein expression analyses, revealed that NCX1 and NCX3, but not NCX2, were divergently modulated during OPC differentiation into oligodendrocyte. In fact, while NCX1 was downregulated, NCX3 was strongly upregulated during the oligodendrocyte development. Whereas the knocking down of the NCX3 isoform in OPCs prevented the upregulation of the myelin protein markers CNPase and MBP, its overexpression induced their upregulation. Furthermore, NCX3 knockout mice exhibited not only a reduced size of spinal cord but also a marked hypomyelination, as revealed by the decrease in MBP expression and by the accompanying increase in OPCs number. Our findings indicate that calcium signaling mediated by NCX3 plays a crucial role in oligodendrocyte maturation and myelin formation.
Assuntos
Isquemia Encefálica/metabolismo , Sinalização do Cálcio , Diferenciação Celular , Microglia/metabolismo , Bainha de Mielina/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Knockout , Microglia/patologia , Proteína Básica da Mielina/biossíntese , Proteína Básica da Mielina/genética , Bainha de Mielina/genética , Bainha de Mielina/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologiaRESUMO
BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a progressive and often fatal neurodegenerative disease characterized by the loss of Motor Neurons (MNs) in spinal cord, motor cortex and brainstem. Despite significant efforts in the field, the exact pathogenetic mechanisms underlying both familial and sporadic forms of ALS have not been fully elucidated, and the therapeutic possibilities are still very limited. Here we investigate the molecular mechanisms of neurodegeneration induced by chronic exposure to the environmental cyanotoxin L-BMAA, which causes a form of ALS/Parkinson's disease (PD) in several populations consuming food and/or water containing high amounts of this compound. METHODS: In this effort, mice were chronically exposed to L-BMAA and analyzed at different time points to evaluate cellular and molecular alterations and behavioral deficits, performing MTT assay, immunoblot, immunofluorescence and immunohistochemistry analysis, and behavioral tests. RESULTS: We found that cyanotoxin L-BMAA determines apoptotic cell death and a marked astrogliosis in spinal cord and motor cortex, and induces neurotoxicity by favoring TDP-43 cytoplasmic accumulation. CONCLUSIONS: Overall, our results characterize a new versatile neurotoxic animal model of ALS that may be useful for the identification of new druggable targets to develop innovative therapeutic strategies for this disease.
RESUMO
Beyond motor neuron degeneration, homozygous mutations in the survival motor neuron 1 (SMN1) gene cause multiorgan and metabolic defects in patients with spinal muscular atrophy (SMA). However, the precise biochemical features of these alterations and the age of onset in the brain and peripheral organs remain unclear. Using untargeted NMR-based metabolomics in SMA mice, we identify cerebral and hepatic abnormalities related to energy homeostasis pathways and amino acid metabolism, emerging already at postnatal day 3 (P3) in the liver. Through HPLC, we find that SMN deficiency induces a drop in cerebral norepinephrine levels in overt symptomatic SMA mice at P11, affecting the mRNA and protein expression of key genes regulating monoamine metabolism, including aromatic L-amino acid decarboxylase (AADC), dopamine beta-hydroxylase (DßH) and monoamine oxidase A (MAO-A). In support of the translational value of our preclinical observations, we also discovered that SMN upregulation increases cerebrospinal fluid norepinephrine concentration in Nusinersen-treated SMA1 patients. Our findings highlight a previously unrecognized harmful influence of low SMN levels on the expression of critical enzymes involved in monoamine metabolism, suggesting that SMN-inducing therapies may modulate catecholamine neurotransmission. These results may also be relevant for setting therapeutic approaches to counteract peripheral metabolic defects in SMA.
Assuntos
Atrofia Muscular Espinal , Proteína 1 de Sobrevivência do Neurônio Motor , Animais , Humanos , Camundongos , Aminoácidos/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Neurotransmissores/metabolismo , Norepinefrina/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genéticaRESUMO
The intricate glia interaction occurring after stroke strongly depend on the maintenance of intraglial ionic homeostasis. Among the several ionic channels and transporters, the plasmamembrane Na+/Ca2+ exchanger (NCX) represents a key player in maintaining astroglial Na+ and Ca2+ homeostasis. Here, using a combined in vitro, in vivo and ex vivo experimental strategy we evaluated whether microglia responding to ischemic injury may influence the morphological and the transcriptional plasticity of post-ischemic astrocytes. Astrocyte plasticity was monitored by the expression of the transcription factor Acheate-scute like 1 (Ascl1), which plays a central role in the commitment of astrocytes towards the neuronal lineage. Furthermore, we explored the implication of NCX1 expression and activity in mediating Ascl1-dependent post-ischemic astrocyte remodeling. We demonstrated that: (a) in astrocytes co-cultured with microglia the exposure to oxygen and glucose deprivation followed by 7 days of reoxygenation induced a prevalence of bipolar astrocytes overexpressing Ascl1 and NCX1, whereas this did not occur in monocultured astrocytes; (b) the reoxygenation of anoxic astrocytes with the conditioned medium derived from IL-4 stimulated microglia strongly elicited the astrocytic co-expression of Ascl1 and NCX1; (c) Ascl1 expression in anoxic astrocytes was dependenton NCX1 since its silencing prevented Ascl1 expression both in in vitro and in post-ischemic ex vivo experimental conditions. Collectively, the results of our study support the idea that, after brain ischemia, astrocyte-microglia crosstalk can influence astrocytic morphology and its Ascl1 expression. This phenomenon is strictly dependent on ischemia-induced increase of NCX1 which in turn induces Ascl1 overexpression possibly through astrocytic Ca2+ elevation.
Assuntos
Astrócitos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Isquemia Encefálica , Transdiferenciação Celular , Trocador de Sódio e Cálcio , Animais , Astrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Isquemia Encefálica/metabolismo , Transdiferenciação Celular/genética , Isquemia/metabolismo , Camundongos , Microglia/metabolismo , Neurônios/metabolismo , Trocador de Sódio e Cálcio/metabolismoRESUMO
INTRODUCTION AND AIMS: The limited therapeutic options for ischemic stroke treatment render necessary the identification of new strategies. In recent years, it has been shown that natural compounds may represent a valid therapeutic opportunity. Therefore, the present study aimed to evaluate the protective effect of Ruta graveolens water extract (RGWE) in an in vivo experimental model of brain ischemia. METHODS: RGWE effects on ischemic damage and neurological function were evaluated in adult rats subjected to transient occlusion of the Middle Cerebral Artery (tMCAO), receiving two intraperitoneal injections of RGWE, 100 and 300 min after the induction of ischemia. In addition, astroglial and microglial activation was measured as GFAP and IBA-1 expression by immunofluorescence and confocal microscopy analysis. RESULTS: Treatment with RGWE containing 10 mg/kg of Rutin, the major component, ameliorates the ischemic damage and improves neurological performances. Interestingly, the pro-inflammatory states of astrocytes and microglia, respectively detected by using C3 and iNOS markers, were significantly reduced in ipsilateral cortical and striatal areas in ischemic RGWE-treated rats. CONCLUSIONS: RGWE shows a neuroprotective effect on brain infarct volume extent in a transient focal cerebral ischemia model and this effect was paralleled by the prevention of pro-inflammatory astroglial and microglial activation. Collectively, our findings support the idea that natural compounds may represent potential therapeutic opportunities against ischemic stroke.
Assuntos
Isquemia Encefálica , Ataque Isquêmico Transitório , AVC Isquêmico , Fármacos Neuroprotetores , Ruta , Animais , Encéfalo , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Isquemia , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/tratamento farmacológico , Ataque Isquêmico Transitório/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , ÁguaRESUMO
Intracellular calcium concentration ([Ca2+]i) transients in astrocytes represent a highly plastic signaling pathway underlying the communication between neurons and glial cells. However, how this important phenomenon may be compromised in Alzheimer's disease (AD) remains unexplored. Moreover, the involvement of several K+ channels, including KV3.4 underlying the fast-inactivating currents, has been demonstrated in several AD models. Here, the effect of KV3.4 modulation by the marine toxin blood depressing substance-I (BDS-I) extracted from Anemonia sulcata has been studied on [Ca2+]i transients in rat primary cortical astrocytes exposed to Aß1-42 oligomers. We showed that: (1) primary cortical astrocytes expressing KV3.4 channels displayed [Ca2+]i transients depending on the occurrence of membrane potential spikes, (2) BDS-I restored, in a dose-dependent way, [Ca2+]i transients in astrocytes exposed to Aß1-42 oligomers (5 µM/48 h) by inhibiting hyperfunctional KV3.4 channels, (3) BDS-I counteracted Ca2+ overload into the endoplasmic reticulum (ER) induced by Aß1-42 oligomers, (4) BDS-I prevented the expression of the ER stress markers including active caspase 12 and GRP78/BiP in astrocytes treated with Aß1-42 oligomers, and (5) BDS-I prevented Aß1-42-induced reactive oxygen species (ROS) production and cell suffering measured as mitochondrial activity and lactate dehydrogenase (LDH) release. Collectively, we proposed that the marine toxin BDS-I, by inhibiting the hyperfunctional KV3.4 channels and restoring [Ca2+]i oscillation frequency, prevented Aß1-42-induced ER stress and cell suffering in astrocytes.
Assuntos
Peptídeos beta-Amiloides/toxicidade , Astrócitos/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Venenos de Cnidários/farmacologia , Retículo Endoplasmático/metabolismo , Fragmentos de Peptídeos/toxicidade , Animais , Células Cultivadas , RatosRESUMO
The small ubiquitin-like modifier (SUMO) conjugation (or SUMOylation) is a post-translational protein modification mechanism activated by different stress conditions that has been recently investigated in experimental models of cerebral ischemia. The expression of SUMOylation enzymes and substrates is not restricted to the nucleus, since they are present also in the cytoplasm and on plasma membrane and are involved in several physiological and pathological conditions. In the last decades, convincing evidence have supported the idea that the increased levels of SUMOylated proteins may induce tolerance to ischemic stress. In particular, it has been established that protein SUMOylation may confer neuroprotection during ischemic preconditioning. Considering the increasing evidence that SUMO can modify stability and expression of ion channels and transporters and the relevance of controlling ionic homeostasis in ischemic conditions, the present review will resume the main aspects of SUMO pathways related to the key molecules involved in maintenance of ionic homeostasis during cerebral ischemia and ischemic preconditioning, with a particular focus on the on Na+/Ca2+ exchangers.
Assuntos
Isquemia Encefálica/metabolismo , Precondicionamento Isquêmico , Trocador de Sódio e Cálcio/metabolismo , Sumoilação , Animais , Humanos , Canais Iônicos/metabolismo , Modelos BiológicosRESUMO
Hyperexcitability and alterations in neuronal networks contribute to cognitive impairment in Alzheimer's Disease (AD). Voltage-gated sodium channels (NaV), which are crucial for regulating neuronal excitability, have been implicated in AD-related hippocampal hyperactivity and higher incidence of spontaneous non-convulsive seizures. Here, we show by using primary hippocampal neurons exposed to amyloid-ß1-42 (Aß1-42) oligomers and from Tg2576 mouse embryos, that the selective upregulation of NaV1.6 subtype contributes to membrane depolarization and to the increase of spike frequency, thereby resulting in neuronal hyperexcitability. Interestingly, we also found that NaV1.6 overexpression is responsible for the aberrant neuronal activity observed in hippocampal slices from 3-month-old Tg2576 mice. These findings identify the NaV1.6 channels as a determinant of the hippocampal neuronal hyperexcitability induced by Aß1-42 oligomers. The selective blockade of NaV1.6 overexpression and/or hyperactivity might therefore offer a new potential therapeutic approach to counteract early hippocampal hyperexcitability and subsequent cognitive deficits in the early stages of AD.
Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/efeitos adversos , Hipocampo/citologia , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Regulação para Cima , Doença de Alzheimer/induzido quimicamente , Animais , Células Cultivadas , Modelos Animais de Doenças , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Cultura Primária de CélulasRESUMO
Triticum vulgare has been extensively used in traditional medicine thanks to its properties of accelerating tissue repair. The specific extract of Triticum vulgare manufactured by Farmaceutici Damor (TVE-DAMOR) is already present in some pharmaceutical formulations used in the treatment of decubitus ulcers, skin lesions and burns. It has been recently suggested that this Triticum vulgare extract may possess potential anti-inflammatory properties. In the light of these premises the aim of the present paper was to verify the anti-inflammatory role of TVE, using the LPS-stimulated microglia model of inflammation. In particular the effect of different concentrations of TVE on the release of several mediators of inflammation such as nitric oxide, IL-6, PGE2 and TNF alpha was evaluated. More important, the anti-inflammatory effect of TVE was confirmed also in primary rat microglia cultures. The results of the present study show that TVE exerts anti-inflammatory properties since it reduces the release of all the evaluated markers of inflammation, such as NO, IL6, TNF alpha and PGE2 in LPS-activated BV2 microglial cells. Intriguingly, TVE reduced microglia activation and NO release also in primary microglia. Indeed, to verify the pathway of modulation of the inflammatory markers reported above, we found that TVE restores the cytoplasmic expression of p65 protein, kwown as specific marker associated with activation of inflammatory response. The evidence for an inhibitory activity on inflammation of this specific extract of Triticum vulgare may open the way to the possibility of a therapeutical use of the Triticum vulgare extract as an anti-inflammatory compound in certain pathological states such as burns, decubitus ulcers, folliculitis and inflammation of peripheral nerve.
Assuntos
Inflamação/tratamento farmacológico , Microglia/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Triticum/química , Animais , Dinoprostona/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Interleucina-6/genética , Lipopolissacarídeos/toxicidade , Camundongos , Microglia/patologia , Óxido Nítrico/genética , Extratos Vegetais/química , Ratos , Fator de Necrose Tumoral alfa/genética , eIF-2 Quinase/genéticaRESUMO
Ectopic expression of defined transcription factors can force direct cell-fate conversion from one lineage to another in the absence of cell division. Several transcription factor cocktails have enabled successful reprogramming of various somatic cell types into induced neurons (iNs) of distinct neurotransmitter phenotype. However, the nature of the intermediate states that drive the reprogramming trajectory toward distinct iN types is largely unknown. Here we show that successful direct reprogramming of adult human brain pericytes into functional iNs by Ascl1 and Sox2 encompasses transient activation of a neural stem cell-like gene expression program that precedes bifurcation into distinct neuronal lineages. During this transient state, key signaling components relevant for neural induction and neural stem cell maintenance are regulated by and functionally contribute to iN reprogramming and maturation. Thus, Ascl1- and Sox2-mediated reprogramming into a broad spectrum of iN types involves the unfolding of a developmental program via neural stem cell-like intermediates.
Assuntos
Linhagem da Célula/fisiologia , Reprogramação Celular/fisiologia , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Pericitos/fisiologia , Adulto , Idoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Neurais/citologia , Neurônios/citologia , Pericitos/citologia , Fatores de Transcrição SOXB1/genética , Adulto JovemRESUMO
Astrocyte dysfunction emerges early in Alzheimer's disease (AD) and may contribute to its pathology and progression. Recently, the voltage gated potassium channel KV3.4 subunit, which underlies the fast-inactivating K+ currents, has been recognized to be relevant for AD pathogenesis and is emerging as a new target candidate for AD. In the present study, we investigated both in in vitro and in vivo models of AD the expression and functional activity of KV3.4 potassium channel subunits in astrocytes. In primary astrocytes our biochemical, immunohistochemical, and electrophysiological studies demonstrated a time-dependent upregulation of KV3.4 expression and functional activity after exposure to amyloid-ß (Aß) oligomers. Consistently, astrocytic KV3.4 expression was upregulated in the cerebral cortex, hippocampus, and cerebellum of 6-month-old Tg2576 mice. Further, confocal triple labeling studies revealed that in 6-month-old Tg2576 mice, KV3.4 was intensely coexpressed with Aß in nonplaque associated astrocytes. Interestingly, in the cortical and hippocampal regions of 12-month-old Tg2576 mice, plaque-associated astrocytes much more intensely expressed KV3.4 subunits, but not Aß. More important, we evidenced that the selective knockdown of KV3.4 expression significantly downregulated both glial fibrillary acidic protein levels and Aß trimers in the brain of 6-month-old Tg2576 mice. Collectively, our results demonstrate that the expression and function of KV3.4 channel subunits are precociously upregulated in cultured astrocytes exposed to Aß oligomers and in reactive astrocytes of AD Tg2576 mice.
Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/efeitos adversos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Expressão Gênica , Canais de Potássio Shaw/genética , Canais de Potássio Shaw/metabolismo , Regulação para Cima , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fragmentos de Peptídeos/efeitos adversos , Fragmentos de Peptídeos/metabolismo , Ratos Wistar , Canais de Potássio Shaw/fisiologia , Regulação para Cima/efeitos dos fármacosRESUMO
Recently, the Na(+)/Ca(+2) exchanger NCX1 and the calcium binding protein calretinin have emerged as new molecular effectors of delayed preconditioning in the brain. In the present study, we investigated whether NCX1 and calretinin cooperate within the preconditioned striatum to confer neurons greater resistance to degeneration. Confocal microscopy analysis revealed that NCX1 expression was upregulated in calretinin-positive interneurons in the rat striatum after tolerance induction. Consistently, coimmunoprecipitation assays performed on human SHSY-5Y cells, a neuronal cell line which constitutively expresses calretinin, revealed a binding between NCX1 and calretinin. Finally, silencing of calretinin expression, both in vitro and in vivo, significantly prevented preconditioning-induced neuroprotection. Interestingly, our biochemical and functional studies showed that the selective silencing of calretinin in brain cells significantly prevented not only the preconditioning-induced upregulation of NCX1 expression and activity but also the activation of the prosurvival protein kinase Akt, which is involved in calretinin and NCX1 protective actions. Collectively, our results indicate that the Na(+)/Ca(+2) exchanger NCX1 and the calcium binding protein calretinin cooperate within the striatum to confer tolerance against cerebral ischemia.