Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nano Lett ; 24(15): 4471-4477, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587318

RESUMO

van der Waals magnets are emerging as a promising material platform for electric field control of magnetism, offering a pathway toward the elimination of external magnetic fields from spintronic devices. A further step is the integration of such magnets with electrical gating components that would enable nonvolatile control of magnetic states. However, this approach remains unexplored for antiferromagnets, despite their growing significance in spintronics. Here, we demonstrate nonvolatile electric field control of magnetoelectric characteristics in van der Waals antiferromagnet CrSBr. We integrate a CrSBr channel in a flash-memory architecture featuring charge trapping graphene multilayers. The electrical gate operation triggers a nonvolatile 200% change in the antiferromagnetic state of CrSBr resistance by manipulating electron accumulation/depletion. Moreover, the nonvolatile gate modulates the metamagnetic transition field of CrSBr and the magnitude of magnetoresistance. Our findings highlight the potential of manipulating magnetic properties of antiferromagnetic semiconductors in a nonvolatile way.

2.
Phys Rev Lett ; 132(4): 046303, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335368

RESUMO

Electrical transport in noncentrosymmetric materials departs from the well-established phenomenological Ohm's law. Instead of a linear relation between current and electric field, a nonlinear conductivity emerges along specific crystallographic directions. This nonlinear transport is fundamentally related to the lack of spatial inversion symmetry. However, the experimental implications of an inversion symmetry operation on the nonlinear conductivity remain to be explored. Here, we report on a large, nonlinear conductivity in chiral tellurium. By measuring samples with opposite handedness, we demonstrate that the nonlinear transport is odd under spatial inversion. Furthermore, by applying an electrostatic gate, we modulate the nonlinear output by a factor of 300, reaching the highest reported value excluding engineered heterostructures. Our results establish chiral tellurium as an ideal compound not just to study the fundamental interplay between crystal structure, symmetry operations and nonlinear transport; but also to develop wireless rectifiers and energy-harvesting chiral devices.

3.
Nano Lett ; 23(10): 4406-4414, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37140909

RESUMO

Graphene is a light material for long-distance spin transport due to its low spin-orbit coupling, which at the same time is the main drawback for exhibiting a sizable spin Hall effect. Decoration by light atoms has been predicted to enhance the spin Hall angle in graphene while retaining a long spin diffusion length. Here, we combine a light metal oxide (oxidized Cu) with graphene to induce the spin Hall effect. Its efficiency, given by the product of the spin Hall angle and the spin diffusion length, can be tuned with the Fermi level position, exhibiting a maximum (1.8 ± 0.6 nm at 100 K) around the charge neutrality point. This all-light-element heterostructure shows a larger efficiency than conventional spin Hall materials. The gate-tunable spin Hall effect is observed up to room temperature. Our experimental demonstration provides an efficient spin-to-charge conversion system free from heavy metals and compatible with large-scale fabrication.

4.
Nano Lett ; 23(9): 3985-3993, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37116103

RESUMO

Strong coupling (SC) between light and matter excitations bears intriguing potential for manipulating material properties. Typically, SC has been achieved between mid-infrared (mid-IR) light and molecular vibrations or between visible light and excitons. However, simultaneously achieving SC in both frequency bands remains unexplored. Here, we introduce polaritonic nanoresonators (formed by h-BN layers on Al ribbons) hosting surface plasmon polaritons (SPPs) at visible frequencies and phonon polaritons (PhPs) at mid-IR frequencies, which simultaneously couple to excitons and molecular vibrations in an adjacent layer of CoPc molecules, respectively. Employing near-field optical nanoscopy, we demonstrate the colocalization of near fields at both visible and mid-IR frequencies. Far-field transmission spectroscopy of the nanoresonator structure covered with a layer of CoPc molecules shows clear mode splittings in both frequency ranges, revealing simultaneous SPP-exciton and PhP-vibron coupling. Dual-band SC may offer potential for manipulating coupling between exciton and molecular vibration in future optoelectronics, nanophotonics, and quantum information applications.

5.
Nat Mater ; 21(5): 526-532, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35256792

RESUMO

Chiral materials are an ideal playground for exploring the relation between symmetry, relativistic effects and electronic transport. For instance, chiral organic molecules have been intensively studied to electrically generate spin-polarized currents in the last decade, but their poor electronic conductivity limits their potential for applications. Conversely, chiral inorganic materials such as tellurium have excellent electrical conductivity, but their potential for enabling the electrical control of spin polarization in devices remains unclear. Here, we demonstrate the all-electrical generation, manipulation and detection of spin polarization in chiral single-crystalline tellurium nanowires. By recording a large (up to 7%) and chirality-dependent unidirectional magnetoresistance, we show that the orientation of the electrically generated spin polarization is determined by the nanowire handedness and uniquely follows the current direction, while its magnitude can be manipulated by an electrostatic gate. Our results pave the way for the development of magnet-free chirality-based spintronic devices.


Assuntos
Nanofios , Eletricidade , Eletricidade Estática , Estereoisomerismo , Telúrio
6.
Nano Lett ; 22(10): 4153-4160, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35435688

RESUMO

Strain is an effective strategy to modulate the optoelectronic properties of 2D materials, but it has been almost unexplored in layered hybrid organic-inorganic metal halide perovskites (HOIPs) due to their complex band structure and mechanical properties. Here, we investigate the temperature-dependent microphotoluminescence (PL) of 2D (C6H5CH2CH2NH3)2Cs3Pb4Br13 HOIP subject to biaxial strain induced by a SiO2 ring platform on which flakes are placed by viscoelastic stamping. At 80 K, we found that a strain of <1% can change the PL emission from a single peak (unstrained) to three well-resolved peaks. Supported by micro-Raman spectroscopy, we show that the thermomechanically generated strain modulates the bandgap due to changes in the octahedral tilting and lattice expansion. Mechanical simulations demonstrate the coexistence of tensile and compressive strain along the flake. The observed PL peaks add an interesting feature to the rich phenomenology of photoluminescence in 2D HOIPs, which can be exploited in tailored sensing and optoelectronic devices.

7.
Nano Lett ; 22(19): 7992-7999, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162104

RESUMO

One of the major obstacles to realizing spintronic devices such as MESO logic devices is the small signal magnitude used for magnetization readout, making it important to find materials with high spin-to-charge conversion efficiency. Although intermixing at the junction of two materials is a widely occurring phenomenon, its influence on material characterization and the estimation of spin-to-charge conversion efficiencies are easily neglected or underestimated. Here, we demonstrate all-electrical spin-to-charge conversion in BixSe1-x nanodevices and show how the conversion efficiency can be overestimated by tens of times depending on the adjacent metal used as a contact. We attribute this to the intermixing-induced compositional change and the properties of a polycrystal that lead to drastic changes in resistivity and spin Hall angle. Strategies to improve the spin-to-charge conversion signal in similar structures for functional devices are discussed.

8.
Nano Lett ; 21(1): 136-143, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33274947

RESUMO

Two-dimensional transition metal dichalcogenides (TMDs) represent an ideal testbench for the search of materials by design, because their optoelectronic properties can be manipulated through surface engineering and molecular functionalization. However, the impact of molecules on intrinsic physical properties of TMDs, such as superconductivity, remains largely unexplored. In this work, the critical temperature (TC) of large-area NbSe2 monolayers is manipulated, employing ultrathin molecular adlayers. Spectroscopic evidence indicates that aligned molecular dipoles within the self-assembled layers act as a fixed gate terminal, collectively generating a macroscopic electrostatic field on NbSe2. This results in an ∼55% increase and a 70% decrease in TC depending on the electric field polarity, which is controlled via molecular selection. The reported functionalization, which improves the air stability of NbSe2, is efficient, practical, up-scalable, and suited to functionalize large-area TMDs. Our results indicate the potential of hybrid 2D materials as a novel platform for tunable superconductivity.

9.
Phys Rev Lett ; 127(4): 047202, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355972

RESUMO

The ultimate goal of spintronics is achieving electrically controlled coherent manipulation of the electron spin at room temperature to enable devices such as spin field-effect transistors. With conventional materials, coherent spin precession has been observed in the ballistic regime and at low temperatures only. However, the strong spin anisotropy and the valley character of the electronic states in 2D materials provide unique control knobs to manipulate spin precession. Here, by manipulating the anisotropic spin-orbit coupling in bilayer graphene by the proximity effect to WSe_{2}, we achieve coherent spin precession in the absence of an external magnetic field, even in the diffusive regime. Remarkably, the sign of the precessing spin polarization can be tuned by a back gate voltage and by a drift current. Our realization of a spin field-effect transistor at room temperature is a cornerstone for the implementation of energy efficient spin-based logic.

10.
Nano Lett ; 20(6): 4573-4579, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32406693

RESUMO

Spin-orbit coupling in graphene can be enhanced by chemical functionalization, adatom decoration, or proximity with a van der Waals material. As it is expected that such enhancement gives rise to a sizable spin Hall effect, a spin-to-charge current conversion phenomenon of technological relevance, it has sparked wide research interest. However, it has only been measured in graphene/transition-metal dichalcogenide van der Waals heterostructures with limited scalability. Here, we experimentally demonstrate the spin Hall effect up to room temperature in graphene combined with a nonmagnetic insulator, an evaporated bismuth oxide layer. The measured spin Hall effect arises most likely from an extrinsic mechanism. With a large spin-to-charge conversion efficiency, scalability, and ease of integration to electronic devices, we show a promising material heterostructure suitable for spin-based device applications.

11.
Nano Lett ; 20(9): 6815-6823, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786952

RESUMO

Spin-dependent transport at heavy metal/magnetic insulator interfaces is at the origin of many phenomena at the forefront of spintronics research. A proper quantification of the different interfacial spin conductances is crucial for many applications. Here, we report the first measurement of the spin Hall magnetoresistance (SMR) of Pt on a purely ferromagnetic insulator (EuS). We perform SMR measurements in a wide range of temperatures and fit the results by using a microscopic model. From this fitting procedure, we obtain the temperature dependence of the spin conductances (Gs, Gr, and Gi), disentangling the contribution of field-like torque (Gi), damping-like torque (Gr), and spin-flip scattering (Gs). An interfacial exchange field of the order of 1 meV acting upon the conduction electrons of Pt can be estimated from Gi, which is at least three times larger than Gr below the Curie temperature. Our work provides an easy method to quantify this interfacial spin-splitting field, which plays a key role in emerging fields such as superconducting spintronics and caloritronics as well as topological quantum computation.

12.
Nano Lett ; 19(2): 1074-1082, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30608710

RESUMO

Graphene is an excellent material for long-distance spin transport but allows little spin manipulation. Transition-metal dichalcogenides imprint their strong spin-orbit coupling into graphene via the proximity effect, and it has been predicted that efficient spin-to-charge conversion due to spin Hall and Rashba-Edelstein effects could be achieved. Here, by combining Hall probes with ferromagnetic electrodes, we unambiguously demonstrate experimentally the spin Hall effect in graphene induced by MoS2 proximity and for varying temperatures up to room temperature. The fact that spin transport and the spin Hall effect occur in different parts of the same material gives rise to a hitherto unreported efficiency for the spin-to-charge voltage output. Additionally, for a single graphene/MoS2 heterostructure-based device, we evidence a superimposed spin-to-charge current conversion that can be indistinguishably associated with either the proximity-induced Rashba-Edelstein effect in graphene or the spin Hall effect in MoS2. By a comparison of our results to theoretical calculations, the latter scenario is found to be the most plausible one. Our findings pave the way toward the combination of spin information transport and spin-to-charge conversion in two-dimensional materials, opening exciting opportunities in a variety of future spintronic applications.

13.
Nano Lett ; 19(12): 8758-8766, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31661967

RESUMO

Efficient and versatile spin-to-charge current conversion is crucial for the development of spintronic applications, which strongly rely on the ability to electrically generate and detect spin currents. In this context, the spin Hall effect has been widely studied in heavy metals with strong spin-orbit coupling. While the high crystal symmetry in these materials limits the conversion to the orthogonal configuration, unusual configurations are expected in low-symmetry transition-metal dichalcogenide semimetals, which could add flexibility to the electrical injection and detection of pure spin currents. Here, we report the observation of spin-to-charge conversion in MoTe2 flakes, which are stacked in graphene lateral spin valves. We detect two distinct contributions arising from the conversion of two different spin orientations. In addition to the conventional conversion where the spin polarization is orthogonal to the charge current, we also detect a conversion where the spin polarization and the charge current are parallel. Both contributions, which could arise either from bulk spin Hall effect or surface Edelstein effect, show large efficiencies comparable to the best spin Hall metals and topological insulators. Our finding enables the simultaneous conversion of spin currents with any in-plane spin polarization in one single experimental configuration.

14.
Phys Rev Lett ; 118(14): 147202, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28430518

RESUMO

Spin Hall magnetoresistance (SMR) has been investigated in Pt/NiO/YIG structures in a wide range of temperature and NiO thickness. The SMR shows a negative sign below a temperature that increases with the NiO thickness. This is contrary to a conventional SMR theory picture applied to the Pt/YIG bilayer, which always predicts a positive SMR. The negative SMR is found to persist even when NiO blocks the spin transmission between Pt and YIG, indicating it is governed by the spin current response of the NiO layer. We explain the negative SMR by the NiO "spin flop" coupled with YIG, which can be overridden at higher temperature by positive SMR contribution from YIG. This highlights the role of magnetic structure in antiferromagnets for transport of pure spin current in multilayers.

15.
Phys Rev Lett ; 116(1): 016603, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26799036

RESUMO

We report measurements of a new type of magnetoresistance in Pt and Ta thin films. The spin accumulation created at the surfaces of the film by the spin Hall effect decreases in a magnetic field because of the Hanle effect, resulting in an increase of the electrical resistance as predicted by Dyakonov [Phys. Rev. Lett. 99, 126601 (2007)]. The angular dependence of this magnetoresistance resembles the recently discovered spin Hall magnetoresistance in Pt/Y(3)Fe(5)O(12) bilayers, although the presence of a ferromagnetic insulator is not required. We show that this Hanle magnetoresistance is an alternative simple way to quantitatively study the coupling between charge and spin currents in metals with strong spin-orbit coupling.

16.
Nanotechnology ; 27(9): 095201, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26821776

RESUMO

We study spin transport in lateral spin valves with constricted channels. Using electromigration, we modulate the spin accumulation by continuously varying the width of the non-magnetic (NM) channel at a single location. By fitting the non-local spin signal data as a function of the NM channel resistance, we extract all the relevant parameters regarding spin transport from a single device. Simulations show that constricting the channel blocks the diffusion of the accumulated spins rather than causing spin flipping. This result could be used to improve the design of future spintronic devices devoted to information processing.

17.
Small ; 11(47): 6295-301, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26505882

RESUMO

Graphene has been predicted to develop a magnetic moment by proximity effect when placed on a ferromagnetic film, a promise that could open exciting possibilities in the fields of spintronics and magnetic data recording. In this work, the interplay between the magnetoresistance of graphene and the magnetization of an underlying ferromagnetic insulating film is studied in detail. A clear correlation between both magnitudes is observed but through a careful modeling of the magnetization and the weak localization measurements, that such correspondence can be explained by the effects of the magnetic stray fields arising from the ferromagnetic insulator is found. The results emphasize the complexity arising at the interface between magnetic and 2D materials.

18.
Phys Rev Lett ; 113(14): 146601, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25325651

RESUMO

Injection of spins into semiconductors is essential for the integration of the spin functionality into conventional electronics. Insulating layers are often inserted between ferromagnetic metals and semiconductors for obtaining an efficient spin injection, and it is therefore crucial to distinguish between signatures of electrical spin injection and impurity-driven effects in the tunnel barrier. Here we demonstrate an impurity-assisted tunneling magnetoresistance effect in nonmagnetic-insulator-nonmagnetic and ferromagnetic-insulator-nonmagnetic tunnel barriers. In both cases, the effect reflects on-off switching of the tunneling current through impurity channels by the external magnetic field. The reported effect is universal for any impurity-assisted tunneling process and provides an alternative interpretation to a widely used technique that employs the same ferromagnetic electrode to inject and detect spin accumulation.

19.
Adv Mater ; 36(26): e2400729, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38597368

RESUMO

Wireless radiofrequency rectifiers have the potential to power the billions of "Internet of Things" (IoT) devices currently in use by effectively harnessing ambient electromagnetic radiation. However, the current technology relies on the implementation of rectifiers based on Schottky diodes, which exhibit limited capabilities for high-frequency and low-power applications. Consequently, they require an antenna to capture the incoming signal and amplify the input power, thereby limiting the possibility of miniaturizing devices to the millimeter scale. Here, the authors report wireless rectification at the GHz range in a microscale device built on single chiral tellurium with extremely low input powers. By studying the crystal symmetry and the temperature dependence of the rectification, the authors demonstrate that its origin is the intrinsic nonlinear conductivity of the material. Additionally, the unprecedented ability to modulate the rectification output by an electrostatic gate is shown. These results open the path to developing tuneable microscale wireless rectifiers with a single material.

20.
Adv Mater ; 36(18): e2310768, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38237911

RESUMO

A charge density wave (CDW) represents an exotic state in which electrons are arranged in a long-range ordered pattern in low-dimensional materials. Although the understanding of the fundamental character of CDW is enriched after extensive studies, its practical application remains limited. Here, an unprecedented demonstration of a tunable charge-spin interconversion (CSI) in graphene/1T-TaS2 van der Waals heterostructures is shown by manipulating the distinct CDW phases in 1T-TaS2. Whereas CSI from spins polarized in all three directions is observed in the heterostructure when the CDW phase does not show commensurability, the output of one of the components disappears, and the other two are enhanced when the CDW phase becomes commensurate. The experimental observation is supported by first-principles calculations, which evidence that chiral CDW multidomains in the heterostructure are at the origin of the switching of CSI. The results uncover a new approach for on-demand CSI in low-dimensional systems, paving the way for advanced spin-orbitronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA