Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Pharm ; 21(1): 216-233, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992229

RESUMO

Nuclear DNA is the canonical target for biological damage induced by Auger electrons (AE) in the context of targeted radionuclide therapy (TRT) of cancer, but other subcellular components might also be relevant for this purpose, such as the energized mitochondria of tumor cells. Having this in mind, we have synthesized novel DOTA-based chelators carrying a prostate-specific membrane antigen (PSMA) inhibitor and a triphenyl phosphonium (TPP) group that were used to obtain dual-targeted 111In-radioconjugates ([111In]In-TPP-DOTAGA-PSMA and [111In]In-TPP-DOTAGA-G3-PSMA), aiming to promote a selective uptake of an AE-emitter radiometal (111In) by PSMA+ prostate cancer (PCa) cells and an enhanced accumulation in the mitochondria. These dual-targeted 111In-radiocomplexes are highly stable under physiological conditions and in cell culture media. The complexes showed relatively similar binding affinities toward the PSMA compared to the reference tracer [111In]In-PSMA-617, in line with their high cellular uptake and internalization in PSMA+ PCa cells. The complexes compromised cell survival in a dose-dependent manner and in the case of [111In]In-TPP-DOTAGA-G3-PSMA to a higher extent than observed for the single-targeted congener [111In]In-PSMA-617. µSPECT imaging studies in PSMA+ PCa xenografts showed that the TPP pharmacophore did not interfere with the excellent in vivo tumor uptake of the "golden standard" [111In]In-PSMA-617, although it led to a higher kidney retention. Such kidney retention does not necessarily compromise their usefulness as radiotherapeutics due to the short tissue range of the Auger/conversion electrons emitted by 111In. Overall, our results provide valuable insights into the potential use of mitochondrial targeting by PSMA-based radiocomplexes for efficient use of AE-emitting radionuclides in TRT, giving impetus to extend the studies to other AE-emitting trivalent radiometals (e.g., 161Tb or 165Er) and to further optimize the designed dual-targeting constructs.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Antígenos de Superfície/metabolismo , Radioisótopos , Compostos Radiofarmacêuticos , Mitocôndrias/metabolismo , Linhagem Celular Tumoral
2.
J Biol Inorg Chem ; 23(5): 763-774, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29846816

RESUMO

A series of bidentate salicylaldimine ligands was prepared and reacted with either [RuCl(µ-Cl)(p-cymene)]2, [RhCl(µ-Cl)(Cp*)]2 or [IrCl(µ-Cl)(Cp*)]2. All of the compounds were characterised using an array of spectroscopic and analytical techniques, namely, nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy and mass spectrometry. Single crystal X-ray diffraction (XRD) was used to confirm the bidentate coordination mode of the salicylaldimine ligand to the metal centre. The platinum group metal (PGM) complexes were screened against the MCF7 breast cancer cell line. The ruthenium and iridium salicylaldimine complexes showed comparable or greater cytotoxicity than cisplatin against the MCF7 cancer cells, as well as greater cytotoxicity than their rhodium counterparts. Three of the salicylaldimine complexes showed potent activity in the range 18-21 µM. Two of these complexes had a greater affinity for cancerous cells than for CHO non-cancerous cells (SI > 4). Preliminary mechanistic studies suggest that the ruthenium complexes undergo solvation prior to 5'-GMP binding, whereas the iridium complexes were inert to the solvation process.


Assuntos
DNA/química , Irídio/química , Compostos Organometálicos/química , Ródio/química , Rutênio/química , Cristalografia por Raios X , Humanos , Células MCF-7 , Análise Espectral/métodos
3.
Pharmaceutics ; 13(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919391

RESUMO

In contrast to external high energy photon or proton therapy, targeted radionuclide therapy (TRNT) is a systemic cancer treatment allowing targeted irradiation of a primary tumor and all its metastases, resulting in less collateral damage to normal tissues. The α-emitting radionuclide bismuth-213 (213Bi) has interesting properties and can be considered as a magic bullet for TRNT. The benefits and drawbacks of targeted alpha therapy with 213Bi are discussed in this review, covering the entire chain from radionuclide production to bedside. First, the radionuclide properties and production of 225Ac and its daughter 213Bi are discussed, followed by the fundamental chemical properties of bismuth. Next, an overview of available acyclic and macrocyclic bifunctional chelators for bismuth and general considerations for designing a 213Bi-radiopharmaceutical are provided. Finally, we provide an overview of preclinical and clinical studies involving 213Bi-radiopharmaceuticals, as well as the future perspectives of this promising cancer treatment option.

4.
Front Med (Lausanne) ; 8: 675122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504849

RESUMO

Targeted radionuclide therapy (TRNT) is a promising approach for cancer therapy. Terbium has four medically interesting isotopes (149Tb, 152Tb, 155Tb and 161Tb) which span the entire radiopharmaceutical space (TRNT, PET and SPECT imaging). Since the same element is used, accessing the various diagnostic or therapeutic properties without changing radiochemical procedures and pharmacokinetic properties is advantageous. The use of (heat-sensitive) biomolecules as vector molecule with high affinity and selectivity for a certain molecular target is promising. However, mild radiolabeling conditions are required to prevent thermal degradation of the biomolecule. Herein, we report the evaluation of potential bifunctional chelators for Tb-labeling of heat-sensitive biomolecules using human serum albumin (HSA) to assess the in vivo stability of the constructs. p-SCN-Bn-CHX-A"-DTPA, p-SCN-Bn-DOTA, p-NCS-Bz-DOTA-GA and p-SCN-3p-C-NETA were conjugated to HSA via a lysine coupling method. All HSA-constructs were labeled with [161Tb]TbCl3 at 40°C with radiochemical yields higher than 98%. The radiolabeled constructs were stable in human serum up to 24 h at 37°C. 161Tb-HSA-constructs were injected in mice to evaluate their in vivo stability. Increasing bone accumulation as a function of time was observed for [161Tb]TbCl3 and [161Tb]Tb-DTPA-CHX-A"-Bn-HSA, while negligible bone uptake was observed with the DOTA, DOTA-GA and NETA variants over a 7-day period. The results indicate that the p-SCN-Bn-DOTA, p-NCS-Bz-DOTA-GA and p-SCN-3p-C-NETA are suitable bifunctional ligands for Tb-based radiopharmaceuticals, allowing for high yield radiolabeling in mild conditions.

5.
Dalton Trans ; 44(44): 19314-29, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26491831

RESUMO

Eight new ruthenium and five new osmium p-cymene half-sandwich complexes have been synthesized, characterized and evaluated for antimalarial activity. All complexes contain ligands that are based on a 4-chloroquinoline framework related to the antimalarial drug chloroquine. Ligands HL(1-8) are salicylaldimine derivatives, where HL(1) = N-(2-((2-hydroxyphenyl)methylimino)ethyl)-7-chloroquinolin-4-amine, and HL(2-8) contain non-hydrogen substituents in the 3-position of the salicylaldimine ring, viz. F, Cl, Br, I, NO2, OMe and (t)Bu for HL(2-8), respectively. Ligand HL(9) is also a salicylaldimine-containing ligand with substitutions in both 3- and 5-positions of the salicylaldimine moiety, i.e. N-(2-((2-hydroxy-3,5-di-tert-butylphenyl)methyl-imino)ethyl)-7-chloroquinolin-4-amine, while HL(10) is N-(2-((1-methyl-1H-imidazol-2-yl)methylamino)ethyl)-7-chloroquinolin-4-amine) The half sandwich metal complexes that have been investigated are [Ru(η(6)-cym)(L(1-8))Cl] (Ru-1-Ru-8, cym = p-cymene), [Os(η(6)-cym)(L(1-3,5,7))Cl] (Os-1-Os-3, Os-5, and Os-7), [M(η(6)-cym)(HL(9))Cl2] (M = Ru, Ru-HL(9); M = Os, Os-HL(9)) and [M(η(6)-cym)(L(10))Cl]Cl (M = Ru, Ru-10; M = Os, Os-10). In complexes Ru-1-Ru-8 and Ru-10, Os-1-Os-3, Os-5 and Os-7 and Os-10, the ligands were found to coordinate as bidentate N,O- and N,N-chelates, while in complexes Ru-HL(9) and Os-HL(9), monodentate coordination of the ligands through the quinoline nitrogen was established. The antimalarial activity of the new ligands and complexes was evaluated against chloroquine sensitive (NF54 and D10) and chloroquine resistant (Dd2) Plasmodium falciparum malaria parasite strains. Coordination of ruthenium and osmium arene moieties to the ligands resulted in lower antiplasmodial activities relative to the free ligands, but the resistance index is better for the ruthenium complexes compared to chloroquine. Overall, osmium complexes appeared to be less active than the corresponding ruthenium complexes.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Cloroquina/análogos & derivados , Cloroquina/farmacologia , Compostos de Ósmio/síntese química , Compostos de Ósmio/farmacologia , Compostos de Rutênio/síntese química , Compostos de Rutênio/farmacologia , Animais , Cloroquina/síntese química , Ligantes , Modelos Moleculares , Estrutura Molecular , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA