Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673511

RESUMO

Due to the emergence of the coronavirus disease (COVID 19), education systems in most countries have adapted and quickly changed their teaching strategy to online teaching. This paper presents the design and implementation of a novel Internet of Things (IoT) device, called MEIoT weather station, which incorporates an exogenous disturbance input, within the National Digital Observatory of Smart Environments (OBNiSE) architecture. The exogenous disturbance input involves a wind blower based on a DC brushless motor. It can be controlled, via Node-RED platform, manually through a sliding bar, or automatically via different predefined profile functions, modifying the wind speed and the wind vane sensor variables. An application to Engineering Education is presented with a case study that includes the instructional design for the least-squares regression topic for linear, quadratic, and cubic approximations within the Educational Mechatronics Conceptual Framework (EMCF) to show the relevance of this proposal. This work's main contribution to the state-of-the-art is to turn a weather monitoring system into a hybrid hands-on learning approach thanks to the integrated exogenous disturbance input.


Assuntos
Internet das Coisas/instrumentação , Meteorologia/instrumentação , Tempo (Meteorologia) , Computadores
2.
Sensors (Basel) ; 21(18)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34577511

RESUMO

Engineering education benefits from the application of modern technology, allowing students to learn essential Science, Technology, Engineering, and Mathematics (STEM) related concepts through hands-on experiences. Robotic kits have been used as an innovative tool in some educational fields, being readily accepted and adopted. However, most of the time, such kits' knowledge level requires understanding basic concepts that are not always appropriate for the student. A critical concept in engineering is the Cartesian Coordinate System (CCS), an essential tool for every engineering, from graphing functions to data analysis in robotics and control applications and beyond. This paper presents the design and implementation of a novel Two-Dimensional Cartesian Coordinate System Educational Toolkit (2D-CACSET) to teach the two-dimensional representations as the first step to construct spatial thinking. This innovative educational toolkit is based on real-time location systems using Ultra-Wide Band technology. It comprises a workbench, four Anchors pinpointing X+, X-, Y+, Y- axes, seven Tags representing points in the plane, one listener connected to a PC collecting the position of the Tags, and a Graphical User Interface displaying these positions. The Educational Mechatronics Conceptual Framework (EMCF) enables constructing knowledge in concrete, graphic, and abstract levels. Hence, the students acquire this knowledge to apply it further down their career path. For this paper, three instructional designs were designed using the 2D-CACSET and the EMCF to learn about coordinate axes, quadrants, and a point in the CCS.


Assuntos
Engenharia , Aprendizagem , Criatividade , Humanos , Estudantes , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA