Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 128(14): 2703-2716, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38507898

RESUMO

We explored the optoelectronic and vibrational properties of a new class of halogen-terminated carbon atomic wires in the form of polyynes using UV-vis, infrared absorption, Raman spectroscopy, X-ray single-crystal diffraction, and DFT calculations. These polyynes terminate on one side with a cyanophenyl group and on the other side, with a halogen atom X (X = Cl, Br, I). We focus on the effect of different halogen terminations and increasing lengths (i.e., 4, 6, and 8 sp-carbon atoms) on the π-electron conjugation and the electronic structure of these systems. The variation in the sp-carbon chain length is more effective in tuning these features than changing the halogen end group, which instead leads to a variety of solid-state architectures. Shifts between the vibrational frequencies of samples in crystalline powders and in solution reflect intermolecular interactions. In particular, the presence of head-to-tail dimers in the crystals is responsible for the modulation of the charge density associated with the π-electron system, and this phenomenon is particularly important when strong I··· N halogen bonds occur.

2.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677624

RESUMO

We present a thorough structural characterization of Graphene Nano Particles (GNPs) prepared by means of physical procedures, i.e., ball milling and ultra-sonication of high-purity synthetic graphite. UV-vis absorption/extinction spectroscopy, Dynamic Light Scattering, Transmission Electron Microscopy, IR and Raman spectroscopies were performed. Particles with small size were obtained, with an average lateral size = 70−120 nm, formed by few = 1−10 stacked layers, and with a small number of carboxylic groups on the edges. GNPs relatively more functionalized were separated by centrifugation, which formed stable water dispersions without the need for any surfactant. A critical reading and unified interpretation of a wide set of spectroscopic data was provided, which demonstrated the potential of Specular Reflectance Infrared Spectroscopy for the diagnosis and quantification of chemical functionalization of GNPs. Raman parameters commonly adopted for the characterization of graphitic materials do not always follow a monotonic trend, e.g., with the particle size and shape, thus unveiling some limitations of the available spectroscopic metrics. This issue was overcome thanks to a comparative spectra analysis, including spectra deconvolution by means of curve fitting procedures, experiments on reference materials and the exploitation of complementary characterization techniques.


Assuntos
Grafite , Nanopartículas , Grafite/química , Nanopartículas/química , Análise Espectral Raman/métodos
3.
Anal Chem ; 94(6): 2966-2972, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35104115

RESUMO

The dye distribution within a photo-electrode is a key parameter in determining the performances of dye-sensitized photon-to-electron conversion devices, such as dye-sensitized solar cells (DSSCs). A traditional, depth profiling investigation by destructive means including cross-sectional sampling is unsuitable for large quality control applications in manufacturing processes. Therefore, a non-destructive monitoring of the dye depth profile is required, which is the first step toward a non-destructive evaluation of the internal degradation of the device in the field. Here, we present a conceptual demonstration of the ability to monitor the dye depth profile within the light active layer of DSSCs by non-destructive means with high chemical specificity using a recently developed non-destructive/non-invasive Raman method, micro-spatially offset Raman spectroscopy (micro-SORS). Micro-SORS is able to probe through turbid materials, providing the molecular identification of compounds located under the surface, without the need of resorting to a cross-sectional analysis. The study was performed on the photo-electrode of DSSCs. This represents the first demonstration of the micro-SORS concept in the solar cell area as well as, more generally, the application of micro-SORS to the thinnest layer to date. A sample set has been prepared with varying concentrations of the dye and the thickness of the matrix consisting of a titanium dioxide layer. The results showed that micro-SORS can unequivocally discriminate between the homogeneous and inhomogeneous dye depth profiles. Moreover, micro-SORS outcomes have been compared with the results obtained with destructive time-of-flight secondary ion mass spectrometry measurements. The results of the two techniques are in good agreement, confirming the reliability of micro-SORS analysis. Therefore, this study is expected to pave the way for establishing a wider and more effective monitoring capability in this important field.


Assuntos
Corantes , Estudos Transversais , Eletrodos , Reprodutibilidade dos Testes , Titânio
4.
J Am Chem Soc ; 138(13): 4322-5, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26977708

RESUMO

We describe the first coronoid nanographene C216-molecule. As an extended polycyclic aromatic hydrocarbon containing a defined cavity, our molecule can be seen as a model system to study the influence of holes on the physical and chemical properties of graphene. Along the pathway of an eight-step synthesis including Yamamoto-type cyclization followed by 6-fold Diels-Alder cycloaddition, C216 was obtained by oxidative cyclodehydrogenation in the final step. The defined molecular structure with a cavity was unambiguously validated by MALDI-TOF mass spectrometry and FTIR, Raman, and UV-vis absorption spectroscopy coupled with DFT simulations.

5.
J Am Chem Soc ; 138(14): 4726-9, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27007058

RESUMO

A multistep synthesis of hexa-peri-hexabenzocoronene (HBC) with four additional K-regions was developed through a precursor based on two benzotetraphene units bridged with p-phenylene, featuring preinstalled zigzag moieties. Characterization by laser desorption/ionization time-of-flight mass spectrometry, Raman and IR spectroscopy, and scanning tunneling microscopy unambiguously validated the successful formation of this novel zigzag edge-rich HBC derivative. STM imaging of its monolayers revealed large-area, defect-free adlayers. The optical properties of the modified HBC were investigated by UV/visible absorption spectroscopy.

6.
Phys Chem Chem Phys ; 18(17): 11869-78, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-26912311

RESUMO

We investigate the molecular structure and vibrational properties of perchlorinated hexa-peri-hexabenzocoronene (HBC-Cl) by density functional theory (DFT) calculations and IR and Raman spectroscopy, in comparison to the parent HBC. The theoretical and experimental IR and Raman spectra demonstrated very good agreement, elucidating a number of vibrational modes corresponding to the observed peaks. Compared with the parent HBC, the edge chlorination significantly alters the planarity of the molecule. Nevertheless, the results indicated that such structural distortion does not significantly impair the π-conjugation of such polycyclic aromatic hydrocarbons.

7.
J Chem Phys ; 145(14): 144901, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27782503

RESUMO

Density functional theory calculations with periodic boundary conditions are exploited to study the infrared spectrum of crystalline polyethylene. Spectral changes lead by the intermolecular packing in the orthorhombic three-dimensional crystal are discussed by means of a careful comparison with calculations carried out for an isolated polymer chain in the all-trans conformation, described as an ideal one-dimensional crystal. The results are analyzed in the framework of the "oligomer approach" through the modelling of the IR spectrum of n-alkanes of different lengths. The study demonstrates that a relevant absorption intensity modulation of CH2 deformation transitions takes place in the solid state. This finding suggests a new interpretation for the experimental evidences collected in the past by means of IR intensity measurement during thermal treatment. Moreover, the comparison between calculations for 3-D crystal and for the isolated polyethylene chain (1-D crystal) allows to put in evidence the effect of the local electric field on the computed infrared intensities. This observation provides guidelines for the comparison between infrared absorption intensities predicted for an isolated unit and for a molecule belonging to a crystal, through the introduction of suitable correction factors based on the refraction index of the material and depending on the dimensionality of such units (0D-molecule; 1D-polymer; 2D-slab).

8.
Appl Spectrosc ; : 37028241265140, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056296

RESUMO

Vibrational spectroscopy allows the investigation of structural properties of pristine and doped poly(3-hexylthiophene-2,5-diyl) (P3HT) in highly anisotropic materials, such as electrospun micro- and nanofibers. Here, we compare several approaches for doping P3HT fibers. We have selected two different electron acceptor molecules as dopants, namely iodine and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). In the case of iodine, we have explored the doping of the fibers according to several different procedures, i.e., by sequential doping both in vapors and in solution, and with a novel promising one-step method, which exploits the mixing of the dopant to the electrospinning feed solution. Polarized infrared (IR) spectroscopy experiments prove the orientation of P3HT chains, with the polymer backbone mainly running parallel to the fiber axis. After doping, P3HT fibers show very strong and polarized doping-induced IR active vibrations (IRAVs), which are the spectroscopic signature of the structure relaxation induced by the charged defects (polarons), thus providing an unambiguous proof of the effective doping. Raman spectroscopy complements the IR evidence: The Raman spectrum shows a clearly recognizable shift of the main band, the so-called effective conjugation coordinate band, in the doped samples. A simple protocol, which quantifies the evolution of the IRAV bands with time, allows monitoring of the doping stability over time and confirms that F4TCNQ is by far superior to iodine.

10.
J Chem Phys ; 139(7): 074304, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23968089

RESUMO

The analytical model for the study of charge mobility in the molecules presented by Galimberti et al. [J. Chem. Phys. 138, 164115 (2013)] is applied to hydrogen bonded planar dimers. Atomic charges and charge fluxes are obtained from density functional theory computed atomic polar tensors and related first derivatives, thus providing an interpretation of the IR intensity enhancement of the X-H stretching band observed upon aggregation. Our results show that both principal and non-principal charge fluxes have an important role for the rationalization of the spectral behavior; moreover, they demonstrate that the modulation of the charge distribution during vibrational motions of the -XH⋯Y- fragment is not localized exclusively on the atoms directly involved in hydrogen bonding. With these premises we made some correlations between IR intensities, interaction energies, and charge fluxes. The model was tested on small dimers and subsequently to the bigger one cytosine-guanine. Thus, the model can be applied to complex systems.


Assuntos
Acetileno/análogos & derivados , Ácido Clorídrico/química , Ácido Fluorídrico/química , Cianeto de Hidrogênio/química , Nitrilas/química , Água/química , Acetileno/química , Dimerização , Ligação de Hidrogênio , Raios Infravermelhos , Teoria Quântica
11.
J Chem Phys ; 138(16): 164115, 2013 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-23635119

RESUMO

On the basis of the analytical model previously suggested by Dinur, we discuss here a method for the calculation of vibrational charge fluxes in planar molecules, obtained as numerical second derivatives of the molecular dipole moment. This model is consistent with the partitioning of the atomic polar tensors into atomic charge and charge fluxes according to the Equilibrium Charges-Charge Fluxes model and it is directly related to experimentally measurable quantities such as IR intensities. On the basis of density functional theory calculations carried out for several small benchmark molecules, the complete set of charge fluxes is calculated for each molecule and compared with the approximated flux parameters previously derived and reported in the past literature. The degree of localization of charge fluxes is investigated and discussed; in addition, some approximations are analyzed in order to verify the applicability of the method to large and∕or non-planar molecules, aimed at obtaining a description of the electron charge mobility in different molecular environments.


Assuntos
Acetileno/química , Etano/química , Formaldeído/química , Cianeto de Hidrogênio/química , Teoria Quântica
12.
Materials (Basel) ; 16(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687698

RESUMO

A theoretical approach based on Periodic Boundary Conditions (PBC) and a Linear Combination of Atomic Orbitals (LCAO) in the framework of the density functional theory (DFT) is used to investigate the molecular mechanism that rules the piezoelectric behavior of poly(vinylidene fluoride) (PVDF) polymer in the crystalline ß-phase. We present several computational tests highlighting the peculiar electrostatic potential energy landscape the polymer chains feel when they change their orientation by a rigid rotation in the lattice cell. We demonstrate that a rotation of the permanent dipole through chain rotation has a rather low energy cost and leads to a lattice relaxation. This justifies the macroscopic strain observed when the material is subjected to an electric field. Moreover, we investigate the effect on the molecular geometry of the expansion of the lattice parameters in the (a, b) plane, proving that the rotation of the dipole can take place spontaneously under mechanical deformation. By band deconvolution of the IR and Raman spectra of a PVDF film with a high content of ß-phase, we provide the experimental phonon wavenumbers and relative band intensities, which we compare against the predictions from DFT calculations. This analysis shows the reliability of the LCAO approach, as implemented in the CRYSTAL software, for calculating the vibrational spectra. Finally, we investigate how the IR/Raman spectra evolve as a function of inter-chain distance, moving towards the isolated chain limit and to the limit of a single crystal slab. The results show the relevance of the inter-molecular interactions on the vibrational dynamics and on the electro-optical features ruling the intensity pattern of the vibrational spectra.

13.
Pharmaceutics ; 15(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36986618

RESUMO

This paper focuses on recent advancements in the development of 4D printed drug delivery systems (DDSs) for the intravesical administration of drugs. By coupling the effectiveness of local treatments with major compliance and long-lasting performance, they would represent a promising innovation for the current treatment of bladder pathologies. Being based on a shape-memory pharmaceutical-grade polyvinyl alcohol (PVA), these DDSs are manufactured in a bulky shape, can be programmed to take on a collapsed one suitable for insertion into a catheter and re-expand inside the target organ, following exposure to biological fluids at body temperature, while releasing their content. The biocompatibility of prototypes made of PVAs of different molecular weight, either uncoated or coated with Eudragit®-based formulations, was assessed by excluding relevant in vitro toxicity and inflammatory response using bladder cancer and human monocytic cell lines. Moreover, the feasibility of a novel configuration was preliminarily investigated, targeting the development of prototypes provided with inner reservoirs to be filled with different drug-containing formulations. Samples entailing two cavities, filled during the printing process, were successfully fabricated and showed, in simulated urine at body temperature, potential for controlled release, while maintaining the ability to recover about 70% of their original shape within 3 min.

14.
Materials (Basel) ; 16(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36984119

RESUMO

An innovative and versatile set-up for in situ and real time measures in an electrochemical cell is described. An original coupling between micro-Raman spectroscopy and atomic force microscopy enables one to collect data on opaque electrodes. This system allows for the correlation of topographic images with chemical maps during the charge exchange occurring in oxidation/reduction processes. The proposed set-up plays a crucial role when reactions, both reversible and non-reversible, are studied step by step during electrochemical reactions and/or when local chemical analysis is required.

15.
J Am Chem Soc ; 134(46): 19070-83, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23088553

RESUMO

A series of quinoidal bithiophenes (QBTs) with controlled variations in steric hindrance and electron activity of the substituents has been synthesized. Evidence of their quinoidal versus biradicaloid ground-state electronic character has been experimentally detected and coherently identified as fingerprints by spectroscopic methods such as NMR, UV-vis, multiwavelength Raman. From this analysis, alkoxy groups have been shown to strongly affect the electronic structure and the ground-state energy and stability of QBTs. Quantum-chemical calculations correctly predict the experimental spectroscopic response, even while changing the alkyl on phenone from a tertiary carbon atom to secondary to primary toward an unsubstituted phenone, further confirming the validity of the approach proposed. A control of the electronic structure accompanied by negligible variations of the optical gap of the molecules has thus been demonstrated, extending the potential use of quinoidal species in fields ranging from photon harvesting to magnetic applications.

16.
Nanomaterials (Basel) ; 12(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36500931

RESUMO

Aligned polymer nanofibres are prepared by means of the electrospinning of a chlorobenzene solution containing regioregular poly(3-hexyltiophene-2,5-diyl), P3HT, and poly(ethylene oxide), PEO. The PEO scaffold is easily dissolved with acetonitrile, leaving pure P3HT fibres, which do not show structural modification. Polymer fibres, either with or without the PEO supporting polymer, are effectively doped by exposure to iodine vapours. Doping is monitored following the changes in the doping-induced vibrational bands (IRAVs) observed in the infrared spectra and by means of Raman spectroscopy. Molecular orientation inside the fibres has been assessed by means of IR experiments in polarised light, clearly demonstrating that electrospinning induces the orientation of the polymer chains along the fibre axis as well as of the defects introduced by doping. This work illustrates a case study that contributes to the fundamental knowledge of the vibrational properties of the doping-induced defects-charged polarons-of P3HT. Moreover, it provides experimental protocols for a thorough spectroscopic characterisation of the P3HT nanofibres, and of doped conjugated polymers in general, opening the way for the control of the material structure when the doped polymer is confined in a one-dimensional architecture.

17.
ACS Omega ; 7(12): 10660-10673, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382315

RESUMO

In this study, we describe a host-guest system consisting of a push-pull dye, the 4-amino-4'-nitroazobenzene (Disperse Orange 3, DO3), mixed with the copolymer poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)] as a potential candidate for nonlinear optics (NLO) applications. We developed electrospun nanofibers of the polymer/dye blend, showing a highly anisotropic molecular structure, where DO3 molecules are mostly oriented parallel to the polymer chain, running in the fiber axis direction. The technique opens a way for obtaining non-centrosymmetric ordering of the NLO chromophore without requiring further poling. The supramolecular architecture is deeply investigated through infrared vibrational spectroscopy, which allows detecting a new phase involving DO3 molecules linked together by strong directional H-bonds. Electron microscopies highlight peculiar nanofiber morphologies with a preferred localization of DO3 at the surface layers.

18.
J Clin Med ; 12(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36614918

RESUMO

A real-world analysis was conducted in Italy among sickle cell disease (SCD) patients to evaluate the epidemiology of SCD, describe patients' characteristics and the therapeutic and economic burden. A retrospective analysis of administrative databases of various Italian entities was carried out. All patients with ≥1 hospitalization with SCD diagnosis were included from 01/2010-12/2017 (up to 12/2018 for epidemiologic analysis). The index date corresponded to the first SCD diagnosis. In 2018, SCD incidence rate was 0.93/100,000, the prevalence was estimated at 13.1/100,000. Overall, 1816 patients were included. During the 1st year of follow-up, 50.7% of patients had one all-cause hospitalization, 27.8% had 2, 10.4% had 3, and 11.1% had ≥4. Over follow-up, 6.1-7.2% of patients were treated with SCD-specific, 58.4-69.4% with SCD-related, 60.7-71.3% with SCD-complications-related drugs. Mean annual number per patient of overall treatments was 14.9 ± 13.9, hospitalizations 1.1 ± 1.1, and out-patient services 5.3 ± 7.6. The total mean direct cost per patient was EUR 7918/year (EUR 2201 drugs, EUR 3320 hospitalizations, and EUR 2397 out-patient services). The results from this real-world analysis showed a high disease burden for SCD patients with multiple hospitalizations during the follow-up. High healthcare resource utilization and costs were associated with patient' management and were most likely underestimated since indirect costs and Emergency Room admissions were not included.

19.
J Am Chem Soc ; 133(47): 19056-9, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22047108

RESUMO

Theoretical modeling has been applied to study the charge transport (CT) parameters of a high-electron-mobility (n-type) naphthalenetetracarboxydiimide copolymer that was recently synthesized and tested for organic field-effect transistor applications. To understand the physicochemical characteristics of such a material, the intra- and intermolecular CT properties of holes and electrons were investigated using different DFT functionals, evidencing the need of range-separated hybrid functionals to predict key parameters such as the hole and electron reorganization energies. Our calculations revealed clear differences between hole- and electron-charging processes, providing fundamental elements for the rationalization of their transport.


Assuntos
Elétrons , Imidas/química , Naftalenos/química , Polímeros/química , Teoria Quântica , Estrutura Molecular , Polímeros/síntese química
20.
ChemistryOpen ; 10(8): 748-755, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34351082

RESUMO

We have recently discussed how organic nanocrystal dissolution appears in different morphologies and the role of the solution pH in the crystal detriment process. We also highlighted the role of the local molecular chemistry in porphyrin nanocrystals having comparable structures: in water-based acid solutions, protonation of free-base porphyrin molecules is the driving force for crystal dissolution, whereas metal (ZnII ) porphyrin nanocrystals remain unperturbed. However, all porphyrin types, having an electron rich π-structure, can be electrochemically oxidized. In this scenario, a key question is: does electrochemistry represent a viable strategy to drive the dissolution of both free-base and metal porphyrin nanocrystals? In this work, by exploiting electrochemical atomic force microscopy (EC-AFM), we monitor in situ and in real time the dissolution of both free-base and metal porphyrin nanocrystals, as soon as molecules reach the oxidation potential, showing different regimes according to the applied EC potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA