Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nano Lett ; 16(4): 2812-7, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26999499

RESUMO

Noble-metal nanoframes are of great interest to many applications due to their unique open structures. Among various noble metals, Ru has never been made into nanoframes. In this study, we report for the first time an effective method based on seeded growth and chemical etching for the facile synthesis of Ru nanoframes with high purity. The essence of this approach is to induce the preferential growth of Ru on the corners and edges of Pd truncated octahedra as the seeds by kinetic control. The resultant Pd-Ru core-frame octahedra could be easily converted to Ru octahedral nanoframes of ∼2 nm in thickness by selectively removing the Pd cores through chemical etching. Most importantly, in this approach the face-centered cubic (fcc) crystal structure of Pd seeds was faithfully replicated by Ru that usually takes an hcp structure. The fcc Ru nanoframes showed higher catalytic activities toward the reduction of p-nitrophenol by NaBH4 and the dehydrogenation of ammonia borane compared with hcp Ru nanowires with roughly the same thickness.

2.
J Nanosci Nanotechnol ; 15(1): 504-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26328390

RESUMO

In this work, we synthesized porous nanohydroxyapatite/collagen composite scaffold (nHA-COL), which resemble extracellular matrices in bone and cartilage tissues. Nano hydroxyapatite (nHA) was successfully nucleated in to the collagen matrix using hen eggshell as calcium biogenic source. Porosity was evaluated by apparent and theoretical density measurement. Porosity of all scaffolds was in the range of 95-98%. XRD and TEM analyses show the purity and size of nucleated HA around 10 nm and selected area electron diffraction (SAED) analysis reveals the polycrystalline nature of nucleated HA. SEM analysis reveals (i) all the scaffolds have interconnected pores with an average pore diameter of 130 micron and (ii) aggregates of hydroxyapatite were strongly embedded in the collagen matrix for both composite scaffolds compared with pure collagen scaffold. EDS analysis shows the Ca/P stoichiometric ratio around 1.67 and FTIR reveals the chemical interaction between the collagen molecule and HA particles. The testing of mechanical properties evidenced that incorporation of HA resulted in up to a two-fold increase in compressive modulus with high reinforcement level (-7 kPa for 50HA-50COL) compared to pure collagen scaffold.


Assuntos
Colágeno/química , Durapatita/química , Casca de Ovo/química , Nanoestruturas/química , Alicerces Teciduais/química , Animais , Porosidade , Engenharia Tecidual
3.
ACS Appl Mater Interfaces ; 12(32): 36688-36694, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32667778

RESUMO

Hexagonal boron nitride (h-BN) has been considered a promising dielectric for two-dimensional (2D) material-based electronics due to its atomically smooth and charge-free interface with an in-plane lattice constant similar to that of graphene. Here, we report atomic layer deposition of boron nitride (ALD-BN) using BCl3 and NH3 precursors directly on thermal SiO2 substrates at a relatively low temperature of 600 °C. The films were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, and transmission electron microscopy wherein the uniform, atomically smooth, and nanocrystalline layered-BN thin film growth is observed. The growth rate is ∼0.042 nm/cycle at 600 °C, a temperature significantly lower than that of h-BN grown by chemical vapor deposition. The dielectric properties of the ALD-BN measured from Metal Oxide Semiconductor Capacitors are comparable with that of SiO2. Moreover, the ALD-BN exhibits a 2-fold increase in carrier mobility of graphene field effect transistors (G-FETs/ALD-BN/SiO2) due to the lower surface charge density and inert surface of ALD-BN in comparison to that of G-FETs fabricated on bare SiO2. Therefore, this work suggests that the transfer-free deposition of ALD-BN on SiO2 may be a promising candidate as a substrate for high performance graphene devices.

4.
ACS Appl Mater Interfaces ; 11(30): 27048-27056, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31283171

RESUMO

The oxygen partial pressure during NiO deposition in reactive sputtering of a Ni target is used to control its carrier type and concentration, obtaining both n- and p-type films. Carrier concentration can be controlled, ranging from 1019 to 1014 cm-3. Films deposition is performed at 200 °C, a relatively low temperature that enables the use of glass as substrate. Experimental band diagrams for n-type NiO are obtained for the first time. Finally, a NiO homojunction is demonstrated by introducing a low carrier concentration layer in between n- and p+-type NiO layers. Layers are deposited in situ, preventing contamination and improving the interface quality, as observed by TEM. The Ni:O ratio for each layer was also obtained by analytical TEM measurements, demonstrating the impact of the oxygen partial pressure on the films' stoichiometry and the simplicity of our process to control carrier type and carrier concentration in oxide semiconductors.

5.
Materials (Basel) ; 12(7)2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30935054

RESUMO

We report an excellent growth behavior of a high-κ dielectric on ReS2, a two-dimensional (2D) transition metal dichalcogenide (TMD). The atomic layer deposition (ALD) of an Al2O3 thin film on the UV-Ozone pretreated surface of ReS2 yields a pinhole free and conformal growth. In-situ half-cycle X-ray photoelectron spectroscopy (XPS) was used to monitor the interfacial chemistry and ex-situ atomic force microscopy (AFM) was used to evaluate the surface morphology. A significant enhancement in the uniformity of the Al2O3 thin film was deposited via plasma-enhanced atomic layer deposition (PEALD), while pinhole free Al2O3 was achieved using a UV-Ozone pretreatment. The ReS2 substrate stays intact during all different experiments and processes without any formation of the Re oxide. This work demonstrates that a combination of the ALD process and the formation of weak S⁻O bonds presents an effective route for a uniform and conformal high-κ dielectric for advanced devices based on 2D materials.

6.
Adv Mater ; 31(30): e1902397, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31183907

RESUMO

The interconnect half-pitch size will reach ≈20 nm in the coming sub-5 nm technology node. Meanwhile, the TaN/Ta (barrier/liner) bilayer stack has to be >4 nm to ensure acceptable liner and diffusion barrier properties. Since TaN/Ta occupy a significant portion of the interconnect cross-section and they are much more resistive than Cu, the effective conductance of an ultrascaled interconnect will be compromised by the thick bilayer. Therefore, 2D layered materials have been explored as diffusion barrier alternatives. However, many of the proposed 2D barriers are prepared at too high temperatures to be compatible with the back-end-of-line (BEOL) technology. In addition, as important as the diffusion barrier properties, the liner properties of 2D materials must be evaluated, which has not yet been pursued. Here, a 2D layered tantalum sulfide (TaSx ) with ≈1.5 nm thickness is developed to replace the conventional TaN/Ta bilayer. The TaSx ultrathin film is industry-friendly, BEOL-compatible, and can be directly prepared on dielectrics. The results show superior barrier/liner properties of TaSx compared to the TaN/Ta bilayer. This single-stack material, serving as both a liner and a barrier, will enable continued scaling of interconnects beyond 5 nm node.

7.
ACS Appl Mater Interfaces ; 10(51): 44862-44870, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30489058

RESUMO

Chemical vapor deposition (CVD) of two-dimensional materials has been an active area of research in recent years because it is a scalable process for obtaining thin films that can be used to fabricate devices. The growth mechanism for hexagonal boron nitride (h-BN) on metal catalyst substrates has been described to be either surface energy-driven or diffusion-driven. In this work, h-BN is grown in a CVD system on Ni single-crystal substrates as a function of Ni crystallographic orientation to clarify the competing forces acting on the growth mechanism. We observed that the thickness of the h-BN film depends on the Ni substrate orientation, with the growth rate increasing from the (100) surface to the (111) surface and the highest on the (110) surface. We associate the observed results with surface reactivity and diffusivity differences for different Ni orientations. Boron and nitrogen diffuse and precipitate from the Ni bulk to form thin multilayer h-BN. Our results serve to clarify the h-BN CVD growth mechanism which has been previously ascribed to a surface energy-driven growth mechanism.

8.
ACS Appl Mater Interfaces ; 10(25): 21411-21427, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29856206

RESUMO

Monitoring of trace amount of acetaminophen and estrogen in drinking water is of great importance because of their potential links to gastrointestinal diseases and breast and prostate cancers. The sensitive and accurate detection of acetaminophen and estrogen requires the development of advanced sensing materials that possess appropriate number of analyte-capturing sites and suitable signal conduction path. This can be achieved by implementing appropriate chemical attachment of multiwalled carbon nanotubes (MWCNTs) and ß-cyclodextrin (ßCD). Here, we report a systematic investigation of four types of modified MWCNT-ßCD: (1) physical mixing, (2) "click reaction", (3) thionyl chloride esterification, and (4) Steglich esterification. The Steglich esterification is a one-step approach with shorter reaction time, lower reaction temperature, and eliminates handling of air/moisture-sensitive reagents. MWCNT-ßCD prepared by Steglich esterification possessed moderate ßCD loading (5-10 wt %), large effective surface area, and fast electron transfer. The host-guest interaction of ßCD and redox properties of MWCNT enabled sensitive detection of acetaminophen and 17ß-estradiol (E2 is a primary female sex hormone) in the range of 0.005-20 and 0.01-15 µM, with low detection limits of 3.3 and 2.5 nM, respectively. We demonstrated accurate detection results of pharmaceutical compositions in water and urine samples. These results indicate that Steglich esterification method may be applied in fabricating pharmaceutical contaminants sensors for health and environmental applications.


Assuntos
Nanotubos de Carbono , beta-Ciclodextrinas/química , Acetaminofen , Estrogênios , Oxirredução
9.
ACS Appl Mater Interfaces ; 9(11): 10120-10127, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28240857

RESUMO

As electronic devices get smaller and more powerful, energy density of energy storage devices increases continuously, and moving components of machinery operate at higher speeds, the need for better thermal management strategies is becoming increasingly important. The removal of heat dissipated during the operation of electronic, electrochemical, and mechanical devices is facilitated by high-performance thermal interface materials (TIMs) which are utilized to couple devices to heat sinks. Herein, we report a new class of TIMs involving the chemical integration of boron nitride nanosheets (BNNS), soft organic linkers, and a copper matrix-which are prepared by the chemisorption-coupled electrodeposition approach. These hybrid nanocomposites demonstrate bulk thermal conductivities ranging from 211 to 277 W/(m K), which are very high considering their relatively low elastic modulus values on the order of 21.2-28.5 GPa. The synergistic combination of these properties led to the ultralow total thermal resistivity values in the range of 0.38-0.56 mm2 K/W for a typical bond-line thickness of 30-50 µm, advancing the current state-of-art transformatively. Moreover, its coefficient of thermal expansion (CTE) is 11 ppm/K, forming a mediation zone with a low thermally induced axial stress due to its close proximity to the CTE of most coupling surfaces needing thermal management.

10.
Ultramicroscopy ; 94(1): 1-18, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12489591

RESUMO

We have developed a method to quantitatively measure the absolute composition of nanometer sized capped quantum dots in semiconductor alloys. The method uses spatially resolved electron energy-loss spectroscopy in a scanning transmission electron microscope to measure compositional profiles across the center of the quantum dot and the adjacent nanometer wide wetting layer. The measurements from the wetting layer are used to derive a spatial broadening function which includes the effects of probe size, instabilities and beam spreading in the sample. This broadening function is employed to simulate compositional profiles from the quantum dots. Information on the dimensions of dots is extracted from annular dark-field images. The method is applied to In(y)Ga(1-y)As (y = 0.5) quantum dots grown on a GaAs substrate. In this system, a simple truncated cone model is found to give an adequate description of the compositional variations across the dot. We find a substantial enrichment in In at the center of the dots, in agreement with theoretical predictions.

11.
ACS Appl Mater Interfaces ; 6(22): 19621-9, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25369153

RESUMO

This paper reports an investigation into the aging of pyrolyzed cobalt/polypyrrole (Co/PPy) oxygen reduction reaction (ORR) electrocatalysts, based on quasi-in-situ photoelectron microspectroscopy. The catalyst precursor was prepared by potentiostatic reverse-pulse coelectrodeposition from an acetonitrile solution on graphite. Accelerated aging was obtained by quasi-in-situ voltammetric cycling in an acidic electrolyte. Using photoelectron imaging and microspectroscopy of single Co/PPy grains at a resolution of 100 nm, we tracked the ORR-induced changes in the morphology and chemical state of the pristine material, consisting of uniformly distributed ∼20 nm nanoparticles, initially consisting of a mixture of Co(II) and Co(III) oxidation states in almost equal amounts. The evolution of the Co 2p, O 1s, and N 1s spectra revealed that the main effects of aging are a gradual loss of the Co present at the surface and the reduction of Co(III) to Co(II), accompanied by the emergence and growth of a N 1s signal, corresponding to electrocatalytically active C-N sites.

12.
Dalton Trans ; 41(41): 12666-9, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23001219

RESUMO

Pd nanoparticles generated on gel type ion-exchange resins under catalytic conditions show high activity, selectivity and durability in partial hydrogenation reactions under mild conditions, thus providing a green, low-cost option for fine-chemicals production. The application to the continuous-flow synthesis of the leaf alcohol fragrance cis-3-hexen-1-ol is demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA