Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 177(2): 315-325.e14, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30929905

RESUMO

Transmission of malaria parasites occurs when a female Anopheles mosquito feeds on an infected host to acquire nutrients for egg development. How parasites are affected by oogenetic processes, principally orchestrated by the steroid hormone 20-hydroxyecdysone (20E), remains largely unknown. Here we show that Plasmodium falciparum development is intimately but not competitively linked to processes shaping Anopheles gambiae reproduction. We unveil a 20E-mediated positive correlation between egg and oocyst numbers; impairing oogenesis by multiple 20E manipulations decreases parasite intensities. These manipulations, however, accelerate Plasmodium growth rates, allowing sporozoites to become infectious sooner. Parasites exploit mosquito lipids for faster growth, but they do so without further affecting egg development. These results suggest that P. falciparum has adopted a non-competitive evolutionary strategy of resource exploitation to optimize transmission while minimizing fitness costs to its mosquito vector. Our findings have profound implications for currently proposed control strategies aimed at suppressing mosquito populations.


Assuntos
Ecdisterona/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Malária Falciparum/parasitologia , Animais , Anopheles/parasitologia , Culicidae , Ecdisterona/fisiologia , Feminino , Células HEK293 , Humanos , Insetos Vetores , Malária/parasitologia , Camundongos , Mosquitos Vetores , Células NIH 3T3 , Oogênese/fisiologia , Plasmodium/metabolismo , Plasmodium falciparum , Esporozoítos , Esteroides/metabolismo
2.
Nature ; 608(7921): 93-97, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35794471

RESUMO

Insects, unlike vertebrates, are widely believed to lack male-biased sex steroid hormones1. In the malaria mosquito Anopheles gambiae, the ecdysteroid 20-hydroxyecdysone (20E) appears to have evolved to both control egg development when synthesized by females2 and to induce mating refractoriness when sexually transferred by males3. Because egg development and mating are essential reproductive traits, understanding how Anopheles females integrate these hormonal signals can spur the design of new malaria control programs. Here we reveal that these reproductive functions are regulated by distinct sex steroids through a sophisticated network of ecdysteroid-activating/inactivating enzymes. We identify a male-specific oxidized ecdysteroid, 3-dehydro-20E (3D20E), which safeguards paternity by turning off female sexual receptivity following its sexual transfer and activation by dephosphorylation. Notably, 3D20E transfer also induces expression of a reproductive gene that preserves egg development during Plasmodium infection, ensuring fitness of infected females. Female-derived 20E does not trigger sexual refractoriness but instead licenses oviposition in mated individuals once a 20E-inhibiting kinase is repressed. Identifying this male-specific insect steroid hormone and its roles in regulating female sexual receptivity, fertility and interactions with Plasmodium parasites suggests the possibility for reducing the reproductive success of malaria-transmitting mosquitoes.


Assuntos
Anopheles , Ecdisteroides , Malária , Comportamento Sexual Animal , Animais , Anopheles/enzimologia , Anopheles/parasitologia , Anopheles/fisiologia , Ecdisteroides/biossíntese , Ecdisteroides/metabolismo , Feminino , Fertilidade , Humanos , Malária/parasitologia , Malária/prevenção & controle , Malária/transmissão , Masculino , Mosquitos Vetores/parasitologia , Oviposição , Fosforilação , Plasmodium
3.
Nature ; 602(7897): 475-480, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929721

RESUMO

Alphaviruses, like many other arthropod-borne viruses, infect vertebrate species and insect vectors separated by hundreds of millions of years of evolutionary history. Entry into evolutionarily divergent host cells can be accomplished by recognition of different cellular receptors in different species, or by binding to receptors that are highly conserved across species. Although multiple alphavirus receptors have been described1-3, most are not shared among vertebrate and invertebrate hosts. Here we identify the very low-density lipoprotein receptor (VLDLR) as a receptor for the prototypic alphavirus Semliki forest virus. We show that the E2 and E1 glycoproteins (E2-E1) of Semliki forest virus, eastern equine encephalitis virus and Sindbis virus interact with the ligand-binding domains (LBDs) of VLDLR and apolipoprotein E receptor 2 (ApoER2), two closely related receptors. Ectopic expression of either protein facilitates cellular attachment, and internalization of virus-like particles, a VLDLR LBD-Fc fusion protein or a ligand-binding antagonist block Semliki forest virus E2-E1-mediated infection of human and mouse neurons in culture. The administration of a VLDLR LBD-Fc fusion protein has protective activity against rapidly fatal Semliki forest virus infection in mouse neonates. We further show that invertebrate receptor orthologues from mosquitoes and worms can serve as functional alphavirus receptors. We propose that the ability of some alphaviruses to infect a wide range of hosts is a result of their engagement of evolutionarily conserved lipoprotein receptors and contributes to their pathogenesis.


Assuntos
Mosquitos Vetores , Vírus da Floresta de Semliki , Animais , Proteínas Relacionadas a Receptor de LDL , Ligantes , Camundongos , Receptores de LDL , Vírus da Floresta de Semliki/metabolismo , Sindbis virus/fisiologia
4.
PLoS Genet ; 20(1): e1011145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38285728

RESUMO

Females from many mosquito species feed on blood to acquire nutrients for egg development. The oogenetic cycle has been characterized in the arboviral vector Aedes aegypti, where after a bloodmeal, the lipid transporter lipophorin (Lp) shuttles lipids from the midgut and fat body to the ovaries, and a yolk precursor protein, vitellogenin (Vg), is deposited into the oocyte by receptor-mediated endocytosis. Our understanding of how the roles of these two nutrient transporters are mutually coordinated is however limited in this and other mosquito species. Here, we demonstrate that in the malaria mosquito Anopheles gambiae, Lp and Vg are reciprocally regulated in a timely manner to optimize egg development and ensure fertility. Defective lipid transport via Lp knockdown triggers abortive ovarian follicle development, leading to misregulation of Vg and aberrant yolk granules. Conversely, depletion of Vg causes an upregulation of Lp in the fat body in a manner that appears to be at least partially dependent on target of rapamycin (TOR) signaling, resulting in excess lipid accumulation in the developing follicles. Embryos deposited by Vg-depleted mothers are completely inviable, and are arrested early during development, likely due to severely reduced amino acid levels and protein synthesis. Our findings demonstrate that the mutual regulation of these two nutrient transporters is essential to safeguard fertility by ensuring correct nutrient balance in the developing oocyte, and validate Vg and Lp as two potential candidates for mosquito control.


Assuntos
Aedes , Anopheles , Malária , Feminino , Animais , Anopheles/genética , Mosquitos Vetores/genética , Vitelogeninas/genética , Vitelogeninas/metabolismo , Proteínas do Ovo/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fertilidade/genética , Lipídeos , Aedes/genética , Aedes/metabolismo
5.
PLoS Pathog ; 19(6): e1011448, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37339122

RESUMO

Insecticide resistance is under strong selective pressure in Anopheles mosquitoes due to widespread usage of insecticides in vector control strategies. Resistance mechanisms likely cause changes that profoundly affect mosquito physiology, yet it remains poorly understood how selective pressures imposed by insecticides may alter the ability of the mosquito to host and transmit a Plasmodium infection. From pyrethroid-resistant field-derived Anopheles gambiae s.l. mosquitoes, we established resistant (RES) and susceptible (SUS) colonies by either selection for, or loss of insecticide resistance. We show increased oocyst intensity and growth rate as well as increased sporozoite prevalence and intensity in RES compared to SUS females infected with Plasmodium falciparum. The increase in infection intensity in RES females was not associated with the presence of the kdrL1014F mutation and was not impacted by inhibition of Cytochrome P450s. The lipid transporter lipophorin (Lp), which was upregulated in RES compared to SUS, was at least partly implicated in the increased intensity of P. falciparum but not directly involved in the insecticide resistance phenotype. Interestingly, we observed that although P. falciparum infections were not affected when RES females were exposed to permethrin, these females had decreased lipid abundance in the fat body following exposure, pointing to a possible role for lipid mobilization in response to damage caused by insecticide challenge. The finding that selection for insecticide resistance can increase P. falciparum infection intensities and growth rate reinforces the need to assess the overall impact on malaria transmission dynamics caused by selective pressures mosquitoes experience during repeated insecticide challenge.


Assuntos
Anopheles , Inseticidas , Malária Falciparum , Malária , Animais , Feminino , Inseticidas/farmacologia , Plasmodium falciparum/fisiologia , Resistência a Inseticidas/genética , Anopheles/fisiologia , Mosquitos Vetores/genética , Lipídeos , Controle de Mosquitos
6.
Nature ; 567(7747): 239-243, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814727

RESUMO

Bites of Anopheles mosquitoes transmit Plasmodium falciparum parasites that cause malaria, which kills hundreds of thousands of people every year. Since the turn of this century, efforts to prevent the transmission of these parasites via the mass distribution of insecticide-treated bed nets have been extremely successful, and have led to an unprecedented reduction in deaths from malaria1. However, resistance to insecticides has become widespread in Anopheles populations2-4, which has led to the threat of a global resurgence of malaria and makes the generation of effective tools for controlling this disease an urgent public health priority. Here we show that the development of P. falciparum can be rapidly and completely blocked when female Anopheles gambiae mosquitoes take up low concentrations of specific antimalarials from treated surfaces-conditions that simulate contact with a bed net. Mosquito exposure to atovaquone before, or shortly after, P. falciparum infection causes full parasite arrest in the midgut, and prevents transmission of infection. Similar transmission-blocking effects are achieved using other cytochrome b inhibitors, which demonstrates that parasite mitochondrial function is a suitable target for killing parasites. Incorporating these effects into a model of malaria transmission dynamics predicts that impregnating mosquito nets with Plasmodium inhibitors would substantially mitigate the global health effects of insecticide resistance. This study identifies a powerful strategy for blocking Plasmodium transmission by female Anopheles mosquitoes, which has promising implications for efforts to eradicate malaria.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/parasitologia , Antimaláricos/farmacologia , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Plasmodium falciparum , África/epidemiologia , Animais , Anopheles/crescimento & desenvolvimento , Antimaláricos/administração & dosagem , Atovaquona/administração & dosagem , Atovaquona/farmacologia , Citocromos b/antagonistas & inibidores , Feminino , Mosquiteiros Tratados com Inseticida , Malária Falciparum/epidemiologia , Modelos Biológicos , Mosquitos Vetores/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Fatores de Tempo
7.
PLoS Pathog ; 18(6): e1010609, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35687594

RESUMO

The spread of insecticide resistance in Anopheles mosquitoes and drug resistance in Plasmodium parasites is contributing to a global resurgence of malaria, making the generation of control tools that can overcome these roadblocks an urgent public health priority. We recently showed that the transmission of Plasmodium falciparum parasites can be efficiently blocked when exposing Anopheles gambiae females to antimalarials deposited on a treated surface, with no negative consequences on major components of mosquito fitness. Here, we demonstrate this approach can overcome the hurdles of insecticide resistance in mosquitoes and drug resistant in parasites. We show that the transmission-blocking efficacy of mosquito-targeted antimalarials is maintained when field-derived, insecticide resistant Anopheles are exposed to the potent cytochrome b inhibitor atovaquone, demonstrating that this drug escapes insecticide resistance mechanisms that could potentially interfere with its function. Moreover, this approach prevents transmission of field-derived, artemisinin resistant P. falciparum parasites (Kelch13 C580Y mutant), proving that this strategy could be used to prevent the spread of parasite mutations that induce resistance to front-line antimalarials. Atovaquone is also highly effective at limiting parasite development when ingested by mosquitoes in sugar solutions, including in ongoing infections. These data support the use of mosquito-targeted antimalarials as a promising tool to complement and extend the efficacy of current malaria control interventions.


Assuntos
Anopheles , Antimaláricos , Malária Falciparum , Malária , Plasmodium , Animais , Anopheles/parasitologia , Antimaláricos/farmacologia , Atovaquona/farmacologia , Feminino , Malária/parasitologia , Malária/prevenção & controle , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/genética
8.
PLoS Pathog ; 16(12): e1008908, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33347501

RESUMO

Anopheles mosquitoes have transmitted Plasmodium parasites for millions of years, yet it remains unclear whether they suffer fitness costs to infection. Here we report that the fecundity of virgin and mated females of two important vectors-Anopheles gambiae and Anopheles stephensi-is not affected by infection with Plasmodium falciparum, demonstrating that these human malaria parasites do not inflict this reproductive cost on their natural mosquito hosts. Additionally, parasite development is not impacted by mating status. However, in field studies using different P. falciparum isolates in Anopheles coluzzii, we find that Mating-Induced Stimulator of Oogenesis (MISO), a female reproductive gene strongly induced after mating by the sexual transfer of the steroid hormone 20-hydroxyecdysone (20E), protects females from incurring fecundity costs to infection. MISO-silenced females produce fewer eggs as they become increasingly infected with P. falciparum, while parasite development is not impacted by this gene silencing. Interestingly, previous work had shown that sexual transfer of 20E has specifically evolved in Cellia species of the Anopheles genus, driving the co-adaptation of MISO. Our data therefore suggest that evolution of male-female sexual interactions may have promoted Anopheles tolerance to P. falciparum infection in the Cellia subgenus, which comprises the most important malaria vectors.


Assuntos
Anopheles/genética , Interações Hospedeiro-Parasita/genética , Plasmodium falciparum/genética , Animais , Anopheles/parasitologia , Ecdisterona/genética , Ecdisterona/metabolismo , Feminino , Fertilidade/genética , Expressão Gênica , Hormônios/fisiologia , Malária/parasitologia , Malária Falciparum/parasitologia , Masculino , Mosquitos Vetores/genética , Oogênese , Plasmodium falciparum/patogenicidade , Reprodução/fisiologia
9.
PLoS Pathog ; 16(12): e1009131, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33382824

RESUMO

Many mosquito species, including the major malaria vector Anopheles gambiae, naturally undergo multiple reproductive cycles of blood feeding, egg development and egg laying in their lifespan. Such complex mosquito behavior is regularly overlooked when mosquitoes are experimentally infected with malaria parasites, limiting our ability to accurately describe potential effects on transmission. Here, we examine how Plasmodium falciparum development and transmission potential is impacted when infected mosquitoes feed an additional time. We measured P. falciparum oocyst size and performed sporozoite time course analyses to determine the parasite's extrinsic incubation period (EIP), i.e. the time required by parasites to reach infectious sporozoite stages, in An. gambiae females blood fed either once or twice. An additional blood feed at 3 days post infection drastically accelerates oocyst growth rates, causing earlier sporozoite accumulation in the salivary glands, thereby shortening the EIP (reduction of 2.3 ± 0.4 days). Moreover, parasite growth is further accelerated in transgenic mosquitoes with reduced reproductive capacity, which mimic genetic modifications currently proposed in population suppression gene drives. We incorporate our shortened EIP values into a measure of transmission potential, the basic reproduction number R0, and find the average R0 is higher (range: 10.1%-12.1% increase) across sub-Saharan Africa than when using traditional EIP measurements. These data suggest that malaria elimination may be substantially more challenging and that younger mosquitoes or those with reduced reproductive ability may provide a larger contribution to infection than currently believed. Our findings have profound implications for current and future mosquito control interventions.


Assuntos
Malária Falciparum/transmissão , Mosquitos Vetores/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Animais , Anopheles/parasitologia , Comportamento Alimentar , Feminino , Período de Incubação de Doenças Infecciosas
10.
Nature ; 538(7625): 344-349, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27602946

RESUMO

Antimalarial drugs have thus far been chiefly derived from two sources-natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are underrepresented in typical screening collections. We report the identification of such compounds with both previously reported and undescribed mechanisms of action, including a series of bicyclic azetidines that inhibit a new antimalarial target, phenylalanyl-tRNA synthetase. These molecules are curative in mice at a single, low dose and show activity against all parasite life stages in multiple in vivo efficacy models. Our findings identify bicyclic azetidines with the potential to both cure and prevent transmission of the disease as well as protect at-risk populations with a single oral dose, highlighting the strength of diversity-oriented synthesis in revealing promising therapeutic targets.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Azetidinas/uso terapêutico , Descoberta de Drogas , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Animais , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Compostos Azabicíclicos/administração & dosagem , Compostos Azabicíclicos/síntese química , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Azetidinas/administração & dosagem , Azetidinas/efeitos adversos , Azetidinas/farmacologia , Citosol/enzimologia , Modelos Animais de Doenças , Feminino , Fígado/efeitos dos fármacos , Fígado/parasitologia , Macaca mulatta/parasitologia , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Masculino , Camundongos , Fenilalanina-tRNA Ligase/antagonistas & inibidores , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/síntese química , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Plasmodium falciparum/citologia , Plasmodium falciparum/enzimologia , Segurança
13.
PLoS Pathog ; 12(12): e1006060, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27977810

RESUMO

The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria. When an agonist of the steroid hormone 20-hydroxyecdysone (20E) is applied to Anopheles gambiae females, which are the dominant malaria mosquito vector in Sub Saharan Africa, it substantially shortens lifespan, prevents insemination and egg production, and significantly blocks Plasmodium falciparum development, three components that are crucial to malaria transmission. Modeling the impact of these effects on Anopheles population dynamics and Plasmodium transmission predicts that disrupting steroid hormone signaling using 20E agonists would affect malaria transmission to a similar extent as insecticides. Manipulating 20E pathways therefore provides a powerful new approach to tackle malaria transmission by the mosquito vector, particularly in areas affected by the spread of insecticide resistance.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/parasitologia , Hidrazinas/farmacologia , Inseticidas/farmacologia , Hormônios Juvenis/farmacologia , Malária/transmissão , Controle de Mosquitos/métodos , Animais , Ecdisterona/agonistas , Feminino , Marcação In Situ das Extremidades Cortadas , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/parasitologia , Mosquiteiros Tratados com Inseticida , Estágios do Ciclo de Vida/efeitos dos fármacos , Modelos Teóricos , Dinâmica Populacional
14.
Proc Natl Acad Sci U S A ; 111(16): 5854-9, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24711401

RESUMO

Anopheles gambiae mosquitoes are major African vectors of malaria, a disease that kills more than 600,000 people every year. Given the spread of insecticide resistance in natural mosquito populations, alternative vector control strategies aimed at reducing the reproductive success of mosquitoes are being promoted. Unlike many other insects, An. gambiae females mate a single time in their lives and must use sperm stored in the sperm storage organ, the spermatheca, to fertilize a lifetime's supply of eggs. Maintenance of sperm viability during storage is therefore crucial to the reproductive capacity of these mosquitoes. However, to date, no information is available on the factors and mechanisms ensuring sperm functionality in the spermatheca. Here we identify cellular components and molecular mechanisms used by An. gambiae females to maximize their fertility. Pathways of energy metabolism, cellular transport, and oxidative stress are strongly regulated by mating in the spermatheca. We identify the mating-induced heme peroxidase (HPX) 15 as an important factor in long-term fertility, and demonstrate that its function is required during multiple gonotrophic cycles. We find that HPX15 induction is regulated by sexually transferred 20-hydroxy-ecdysone (20E), a steroid hormone that is produced by the male accessory glands and transferred during copulation, and that expression of this peroxidase is mediated via the 20E nuclear receptor. To our knowledge, our findings provide the first evidence of the mechanisms regulating fertility in Anopheles, and identify HPX15 as a target for vector control.


Assuntos
Estruturas Animais/enzimologia , Anopheles/enzimologia , Proteínas de Insetos/metabolismo , Peroxidase/metabolismo , Comportamento Sexual Animal , Espermatozoides/enzimologia , Estruturas Animais/citologia , Estruturas Animais/efeitos dos fármacos , Estruturas Animais/ultraestrutura , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Ecdisona/farmacologia , Ativação Enzimática/efeitos dos fármacos , Feminino , Fertilidade/efeitos dos fármacos , Fertilidade/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Heme/metabolismo , Proteínas de Insetos/genética , Masculino , Peroxidase/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Comportamento Sexual Animal/efeitos dos fármacos , Espermatozoides/citologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/ultraestrutura , Transcrição Gênica/efeitos dos fármacos
15.
Proc Natl Acad Sci U S A ; 111(46): 16353-8, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25368171

RESUMO

Female insects generally mate multiple times during their lives. A notable exception is the female malaria mosquito Anopheles gambiae, which after sex loses her susceptibility to further copulation. Sex in this species also renders females competent to lay eggs developed after blood feeding. Despite intense research efforts, the identity of the molecular triggers that cause the postmating switch in females, inducing a permanent refractoriness to further mating and triggering egg-laying, remains elusive. Here we show that the male-transferred steroid hormone 20-hydroxyecdysone (20E) is a key regulator of monandry and oviposition in An. gambiae. When sexual transfer of 20E is impaired by partial inactivation of the hormone and inhibition of its biosynthesis in males, oviposition and refractoriness to further mating in the female are strongly reduced. Conversely, mimicking sexual delivery by injecting 20E into virgin females switches them to an artificial mated status, triggering egg-laying and reducing susceptibility to copulation. Sexual transfer of 20E appears to incapacitate females physically from receiving seminal fluids by a second male. Comparative analysis of microarray data from females after mating and after 20E treatment indicates that 20E-regulated molecular pathways likely are implicated in the postmating switch, including cytoskeleton and musculature-associated genes that may render the atrium impenetrable to additional mates. By revealing signals and pathways shaping key processes in the An. gambiae reproductive biology, our data offer new opportunities for the control of natural populations of malaria vectors.


Assuntos
Anopheles/fisiologia , Ecdisterona/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Copulação , Ecdisterona/farmacologia , Feminino , Perfilação da Expressão Gênica , Genes de Insetos , Injeções , Insetos Vetores/fisiologia , Malária/transmissão , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Oviposição/fisiologia , Fatores de Tempo , Transcrição Gênica
16.
PLoS Biol ; 11(10): e1001695, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204210

RESUMO

Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E) transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO) protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male-female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria.


Assuntos
Anopheles/metabolismo , Ecdisona/análogos & derivados , Hormônios/metabolismo , Proteínas de Insetos/metabolismo , Malária/parasitologia , Oogênese , Esteroides/metabolismo , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Ecdisona/metabolismo , Ecdisona/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Genes de Insetos/genética , Proteínas de Insetos/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas/metabolismo , Masculino , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Oogênese/efeitos dos fármacos , Oogênese/genética , Óvulo/metabolismo , Comportamento Sexual Animal/efeitos dos fármacos
17.
J Biol Chem ; 288(7): 4844-53, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23288850

RESUMO

Male Anopheles mosquitoes coagulate their seminal fluids via cross-linking of a substrate, called Plugin, by the seminal transglutaminase AgTG3. Formation of the "mating plug" by cross-linking Plugin is necessary for efficient sperm storage by females. AgTG3 has a similar degree of sequence identity (~30%) to both human Factor XIII (FXIII) and tissue transglutaminase 2 (hTG2). Here we report the solution structure and in vitro activity for the cross-linking reaction of AgTG3 and Plugin. AgTG3 is a dimer in solution and exhibits Ca(2+)-dependent nonproteolytic activation analogous to cytoplasmic FXIII. The C-terminal domain of Plugin is predominantly α-helical with extended tertiary structure and oligomerizes in solution. The specific activity of AgTG3 was measured as 4.25 × 10(-2) units mg(-1). AgTG3 is less active than hTG2 assayed using the general substrate TVQQEL but has 8-10× higher relative activity when Plugin is the substrate. Mass spectrometric analysis of cross-linked Plugin detects specific peptides including a predicted consensus motif for cross-linking by AgTG3. These results support the development of AgTG3 inhibitors as specific and effective chemosterilants for A. gambiae.


Assuntos
Anopheles/enzimologia , Transglutaminases/química , Sequência de Aminoácidos , Animais , Cálcio/química , Reagentes de Ligações Cruzadas/química , Citoplasma/metabolismo , Dimerização , Feminino , Masculino , Espectrometria de Massas/métodos , Modelos Químicos , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Transglutaminases/metabolismo
18.
Malar J ; 13: 210, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24888439

RESUMO

BACKGROUND: Current vector-based malaria control strategies are threatened by the rise of biochemical and behavioural resistance in mosquitoes. Researching mosquito traits of immunity and fertility is required to find potential targets for new vector control strategies. The seminal transglutaminase AgTG3 coagulates male Anopheles gambiae seminal fluids, forming a 'mating plug' that is required for male reproductive success. Inhibitors of AgTG3 can be useful both as chemical probes of A. gambiae reproductive biology and may further the development of new chemosterilants for mosquito population control. METHODS: A targeted library of 3-bromo-4,5-dihydroxoisoxazole inhibitors were synthesized and screened for inhibition of AgTG3 in a fluorescent, plate-based assay. Positive hits were tested for in vitro activity using cross-linking and mass spectrometry, and in vivo efficacy in laboratory mating assays. RESULTS: A targeted chemical library was screened for inhibition of AgTG3 in a fluorescent plate-based assay using its native substrate, plugin. Several inhibitors were identified with IC50 < 10 µM. Preliminary structure-activity relationships within the library support the stereo-specificity and preference for aromatic substituents in the chemical scaffold. Both inhibition of plugin cross-linking and covalent modification of the active site cysteine of AgTG3 were verified. Administration of an AgTG3 inhibitor to A. gambiae males by intrathoracic injection led to a 15% reduction in mating plug transfer in laboratory mating assays. CONCLUSIONS: A targeted screen has identified chemical inhibitors of A. gambiae transglutaminase 3 (AgTG3). The most potent inhibitors are known inhibitors of human transglutaminase 2, suggesting a common binding pose may exist within the active site of both enzymes. Future efforts to develop additional inhibitors will provide chemical tools to address important biological questions regarding the role of the A. gambiae mating plug. A second use for transglutaminase inhibitors exists for the study of haemolymph coagulation and immune responses to wound healing in insects.


Assuntos
Anopheles/enzimologia , Esterilizantes Químicos/farmacologia , Proteínas de Insetos/antagonistas & inibidores , Isoxazóis/farmacologia , Controle de Mosquitos/métodos , Sêmen/enzimologia , Transglutaminases/antagonistas & inibidores , Animais , Domínio Catalítico , Esterilizantes Químicos/síntese química , Esterilizantes Químicos/química , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Concentração Inibidora 50 , Isoxazóis/síntese química , Isoxazóis/química , Masculino , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Proteínas Recombinantes/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Especificidade da Espécie , Relação Estrutura-Atividade , Especificidade por Substrato
19.
Proc Natl Acad Sci U S A ; 108(33): 13677-81, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21825136

RESUMO

Anopheles gambiae sensu stricto is the major vector of malaria, a disease with devastating consequences for human health. Given the constant spread of the disease, alternative approaches to the use of insecticides are urgently needed to control vector populations. Females of this species undergo large behavioral changes after mating, which include a life-long refractoriness to further insemination and the induction of egg laying in blood-fed individuals. Genetic control strategies aimed at impacting Anopheles fertility through the release of sterile males are being advocated to reduce the size of mosquito field populations. Such strategies depend on the ability of the released sterile males to mate successfully with wild females and to switch off the female receptivity to further copulation. Here we evaluate the role of sperm in regulating female behavioral responses after mating in An. gambiae. We developed spermless males by RNAi silencing of a germ cell differentiation gene. These males mated successfully and preserved standard accessory gland functions. Females mated to spermless males exhibited normal postcopulatory responses, which included laying large numbers of eggs upon blood feeding and becoming refractory to subsequent insemination. Moreover, spermless males induced transcriptional changes in female reproductive genes comparable to those elicited by fertile males. Our data demonstrate that, in contrast to Drosophila, targeting sperm in An. gambiae preserves normal male and female reproductive behavior for the traits and time frame analyzed and validate the use of approaches based on incapacitation or elimination of sperm for genetic control of vector populations to block malaria transmission.


Assuntos
Anopheles/fisiologia , Infertilidade Masculina/genética , RNA Interferente Pequeno/farmacologia , Comportamento Sexual Animal , Animais , Anopheles/efeitos dos fármacos , Feminino , Inativação Gênica/efeitos dos fármacos , Inseminação , Masculino , Reprodução , Espermatozoides/efeitos dos fármacos
20.
Sci Rep ; 14(1): 4057, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374393

RESUMO

Rapid spread of insecticide resistance among anopheline mosquitoes threatens malaria elimination efforts, necessitating development of alternative vector control technologies. Sterile insect technique (SIT) has been successfully implemented in multiple insect pests to suppress field populations by the release of large numbers of sterile males, yet it has proven difficult to adapt to Anopheles vectors. Here we outline adaptation of a CRISPR-based genetic sterilization system to selectively ablate male sperm cells in the malaria mosquito Anopheles gambiae. We achieve robust mosaic biallelic mutagenesis of zero population growth (zpg, a gene essential for differentiation of germ cells) in F1 individuals after intercrossing a germline-expressing Cas9 transgenic line to a line expressing zpg-targeting gRNAs. Approximately 95% of mutagenized males display complete genetic sterilization, and cause similarly high levels of infertility in their female mates. Using a fluorescence reporter that allows detection of the germline leads to a 100% accurate selection of spermless males, improving the system. These males cause a striking reduction in mosquito population size when released at field-like frequencies in competition cages against wild type males. These findings demonstrate that such a genetic system could be adopted for SIT against important malaria vectors.


Assuntos
Anopheles , Infertilidade Masculina , Malária , Humanos , Animais , Masculino , Feminino , Anopheles/genética , Controle de Mosquitos/métodos , Mosquitos Vetores/genética , Sêmen , RNA Guia de Sistemas CRISPR-Cas , Infertilidade Masculina/genética , Mutagênese , Células Germinativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA