Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(7): 076802, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29542952

RESUMO

Our analysis of the contact formation processes undergone by Au, Ag, and Cu nanojunctions reveals that the distance at which the two closest atoms on a pair of opposing electrodes jump into contact is, on average, 2 times longer for Au than either Ag or Cu. This suggests the existence of a longer-range interaction between those two atoms in the case of Au, a result of the significant relativistic energy contributions to the electronic structure of this metal, as confirmed by ab initio calculations. Once in the contact regime, the differences between Au, Ag, and Cu are subtle, and the conductance of single-atom contacts for metals of similar chemical valence is mostly determined by geometry and coordination.

2.
Phys Chem Chem Phys ; 19(11): 8061-8068, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28265621

RESUMO

Graphite surfaces can be manipulated by several methods to create graphene structures of different shapes and sizes. Scanning tunneling microscopy (STM) can be used to create these structures either through mechanical contact between the tip and the surface or through electro-exfoliation. In the latter, the mechanisms involved in the process of exfoliation at an applied voltage are not fully understood. Here, we show how a graphite surface can be locally exfoliated in a systematic manner by applying an electrostatic force with a STM tip at the edge of a terrace, forming triangular flakes several nanometers in length. We demonstrate, through experiments and simulations, how these flakes are created by a two-step process: first a voltage ramp must be applied at the edge of the terrace, and then the tip must be scanned perpendicular to the edge. Ab initio electrostatic calculations reveal that the presence of charges on the graphite surface weakens the interaction between layers allowing for exfoliation at voltages in the same range as those used experimentally. Molecular dynamics simulations show that a force applied locally on the edge of a step produces triangular flakes such as those observed under STM. Our results provide new insights into surface modification that can be extended to other layered materials.

3.
Phys Chem Chem Phys ; 18(20): 13897-903, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27145734

RESUMO

Ripples present in free standing graphene have an important influence on the mechanical behavior of this two-dimensional material. In this study, we show through nanoindentation simulations, how out-of-plane displacements can be modified by strain, resulting in softening of the membrane under compression and stiffening under tension. Irradiation also induces changes in the mechanical properties of graphene. Interestingly, compressed samples, irradiated at low doses are stiffened by the irradiation, whereas the samples under tensile strain do not show significant changes in their mechanical properties. These simulations indicate that vacancies produced by the energetic ions cannot be the ones directly responsible for this behavior. However, changes in roughness induced by the momentum transferred from the energetic ions to the membrane, can explain these differences. These results provide an alternative explanation to recent experimental observations of the stiffening of graphene under low dose irradiation, as well as the paths to tailor the mechanical properties of this material via applied strain and irradiation.

4.
Phys Rev Lett ; 108(20): 205502, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-23003153

RESUMO

The process of creating an atomically defined and robust metallic tip is described and quantified using measurements of contact conductance between gold electrodes and numerical simulations. Our experiments show how the same conductance behavior can be obtained for hundreds of cycles of formation and rupture of the nanocontact by limiting the indentation depth between the two electrodes up to a conductance value of approximately 5G0 in the case of gold. This phenomenon is rationalized using molecular dynamics simulations together with density functional theory transport calculations which show how, after repeated indentations (mechanical annealing), the two metallic electrodes are shaped into tips of reproducible structure. These results provide a crucial insight into fundamental aspects relevant to nanotribology or scanning probe microscopies.

5.
Phys Rev E ; 104(3-1): 034101, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34654188

RESUMO

Fluctuation theorems allow one to obtain equilibrium information from nonequilibrium experiments. The probability distribution function of the relevant magnitude measured along the irreversible nonequilibrium trajectories is an essential ingredient of fluctuation theorems. In small systems, where fluctuations can be larger than average values, probability distribution functions often deviate from being Gaussian, showing long tails, mostly exponential, and usually strongly asymmetric. Recently, the probability distribution function of the van Hove correlation function of the relevant magnitude was calculated, instead of that of the magnitude itself. The resulting probability distribution function is highly symmetric, obscuring the application of fluctuation theorems. Here, the discussion is illustrated with the help of results for the heat exchanged during plastic deformation of aluminum nanowires, obtained from molecular dynamics calculations. We find that the probability distribution function for the heat exchanged is centrally Gaussian, with asymmetric exponential tails further out. By calculating the symmetry function we show that this distribution is consistent with fluctuation theorems relating the differences between two equilibrium states to an infinite number of nonequilibrium paths connecting those two states.

6.
Opt Express ; 8(11): 611-6, 2001 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19421249

RESUMO

High-power 351 nm (3 ) laser pulses can produce damaged areas in high quality fused silica optics. Recent experiments have shown the presence of a densified layer at the bottom of damage initiation craters. We have studied the propagation of shock waves through fused silica using large-scale atomistic simulations since such shocks are expected to accompany laser energy deposition. These simulations show that the shocks induce structural transformations in the material that persist long after the shock has dissipated. Values of densification and thickness of densified layer agree with experimental observations. Moreover, our simulations give an atomistic description of the structural changes in the material due to shock waves and their relation to Raman spectra measurements.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(3 Pt 1): 030105, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19905045

RESUMO

The heat exchanged upon isothermal (0.5-200 K) stretching of aluminum and gold nanowires has been calculated by means of molecular dynamics. Atoms at fixed positions with velocities randomly distributed according to Maxwell distribution were taken as initial conditions. The results clearly reveal the presence of non-Gaussian (exponential) tails in the heat probability distribution function at low temperatures, both in gold and aluminum. As temperature is raised, tails rapidly disappear.

8.
Phys Rev Lett ; 98(20): 206801, 2007 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-17677725

RESUMO

The transition from tunneling to metallic contact between two surfaces does not always involve a jump, but can be smooth. We have observed that the configuration and material composition of the electrodes before contact largely determine the presence or absence of a jump. Moreover, when jumps are found preferential values of conductance have been identified. Through a combination of experiments, molecular dynamics, and first-principles transport calculations these conductance values are identified with atomic contacts of either monomers, dimers, or double-bond contacts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA