Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093427

RESUMO

Mucopolysaccharidosis type I (MPS I) is caused by genetic deficiency of α-l-iduronidase and impairment of lysosomal catabolism of heparan sulfate and dermatan sulfate. In the brain, these substrates accumulate in the lysosomes of neurons and glial cells, leading to neuroinflammation and neurodegeneration. Their storage also affects lysosomal homeostasis-inducing activity of several lysosomal proteases including cathepsin B (CATB). In the central nervous system, increased CATB activity has been associated with the deposition of amyloid plaques due to an alternative pro-amyloidogenic processing of the amyloid precursor protein (APP), suggesting a potential role of this enzyme in the neuropathology of MPS I. In this study, we report elevated levels of protein expression and activity of CATB in cortex tissues of 6-month-old MPS I (Idua -/- mice. Besides, increased CATB leakage from lysosomes to the cytoplasm of Idua -/- cortical pyramidal neurons was indicative of damaged lysosomal membranes. The increased CATB activity coincided with an elevated level of the 16-kDa C-terminal APP fragment, which together with unchanged levels of ß-secretase 1 was suggestive for the role of this enzyme in the amyloidogenic APP processing. Neuronal accumulation of Thioflavin-S-positive misfolded protein aggregates and drastically increased levels of neuroinflammatory glial fibrillary acidic protein (GFAP)-positive astrocytes and CD11b-positive activated microglia were observed in Idua -/- cortex by confocal fluorescent microscopy. Together, our results point to the existence of a novel CATB-associated alternative amyloidogenic pathway in MPS I brain induced by lysosomal storage and potentially leading to neurodegeneration.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Catepsina B/metabolismo , Córtex Cerebral/metabolismo , Mucopolissacaridose I/metabolismo , Células Piramidais/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Catepsina B/genética , Córtex Cerebral/patologia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Camundongos , Camundongos Knockout , Mucopolissacaridose I/genética , Mucopolissacaridose I/patologia , Células Piramidais/patologia
2.
J Transl Med ; 17(1): 103, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30922347

RESUMO

BACKGROUND: Heparanase (HPSE) is an endo-beta-glucuronidase that degrades heparan sulfate (HS) chains on proteoglycans. The oligosaccharides generated by HPSE promote angiogenesis, tumor growth and metastasis. Heparanase-2 (HPSE2), a close homolog of HPSE, does not exhibit catalytic activity. Previous studies have demonstrated that serum or plasma from breast cancer patients showed increased expression of both heparanases in circulating lymphocytes. The aim of this study was to better understand the mechanisms involved in the upregulation of heparanases in circulating lymphocytes. METHODS: Lymphocytes collected from healthy women were incubated in the presence of MCF-7 breast cancer cells (co-culture) to stimulate HPSE and HPSE2 overexpression. The protein level of heparanases was evaluated by immunocytochemistry, while mRNA expression was determined by quantitative RT-PCR. RESULTS: The medium obtained from co-culture of MCF-7 cells and circulating lymphocytes stimulated the expression of HPSE and HPSE2. Previous treatment of the co-culture medium with an anti-heparan sulfate proteoglycan antibody or heparitinase II inhibited the upregulation of heparanases in circulating lymphocytes. The addition of exogenous heparan sulfate (HS) enhanced the expression of both heparanases. Moreover, the co-cultured cells, as well as MCF-7 cells, secreted a higher number of exosomes expressing an increased level of HS compared to that of the exosomes secreted by circulating lymphocytes from women who were not affected by cancer. CONCLUSIONS: The results revealed that HS is likely responsible for mediating the expression of heparanases in circulating lymphocytes. HS secreted by tumor cells might be carried by exosome particles, confirming the key role of tumor cells, as well as secreted HS, in upregulating the expression of heparanases, suggesting a possible mechanism of crosstalk between tumor cells and circulating lymphocytes.


Assuntos
Neoplasias da Mama/genética , Comunicação Celular/fisiologia , Glucuronidase/genética , Linfócitos/fisiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Comunicação Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucuronidase/metabolismo , Heparitina Sulfato/metabolismo , Heparitina Sulfato/fisiologia , Humanos , Ativação Linfocitária/genética , Linfócitos/metabolismo , Células MCF-7 , Receptor Cross-Talk/efeitos dos fármacos , Receptor Cross-Talk/imunologia
3.
Med Mycol ; 56(7): 803-808, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29228246

RESUMO

Persistent candidemia refers to the continued isolation of the same Candida species in the blood of a candidemic patient despite appropriate therapy. Despite the clinical importance of persistent candidemia, studies have superficially addressed the biological conditions behind this phenomenon. The aim of this study was to evaluate the correlation between the biofilm-forming ability by Candida bloodstream isolates and the persistence of infection. A total of 55 isolates of Candida were tested and characterized in two groups: (i) group I, which included seven patients with persistent candidemia, and (ii) group II, which included 18 patients with nonpersistent candidemia. Microorganisms were identified at the species level by sequencing the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA). Biofilm quantification was evaluated by the crystal violet staining method and confocal scanning laser microscopy (CSLM). Molecular tests confirmed the identification of Candida albicans (92% group I and 94% group II) and Candida dubliniensis isolates (8% group I and 6% group II). All 55 isolates were able to form biofilms, but a higher biofilm mass was produced by C. albicans/C. dubliniensis strains cultured from the persistent group (P < .05). Our data suggest that Candida sp. biofilm production should be considered a relevant biologic variable in explaining patients who fail to clear a bloodstream infection despite adequate antifungal treatment with triazoles.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida/crescimento & desenvolvimento , Candidemia/microbiologia , Candidemia/patologia , Candida/classificação , Candida/genética , Candida/isolamento & purificação , Estudos de Coortes , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Violeta Genciana/metabolismo , Humanos , Técnicas Microbiológicas , Microscopia Confocal , Análise de Sequência de DNA , Coloração e Rotulagem
4.
Biochim Biophys Acta ; 1818(5): 1211-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22285741

RESUMO

Investigating the role of proteoglycans associated to cell membranes is fundamental to comprehend biochemical process that occurs at the level of membrane surfaces. In this paper, we exploit syndecan-4, a heparan sulfate proteoglycan obtained from cell cultures, in lipid Langmuir monolayers at the air-water interface. The monolayer served as a model for half a membrane, and the molecular interactions involved could be evaluated with tensiometry and vibrational spectroscopy techniques. Polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) employed in a constant surface pressure regime showed that the main chemical groups for syndecan-4 were present at the air-water interface. Subsequent monolayer decompression and compression showed surface pressure-area isotherms with a large expansion for the lipid monolayers interacting with the cell culture reported to over-express syndecan-4, which was also an indication that the proteoglycan was inserted in the lipid monolayer. The introduction of biological molecules with affinity for syndecam-4, such as growth factors, which present a key role in biochemical process of cell signaling, changed the surface properties of the hybrid film, leading to a model, by which the growth factor binds to the sulfate groups present in the heparan sulfate chains. The polypeptide moiety of syndecan-4 responds to this interaction changing its conformation, which leads to lipid film relaxation and further monolayer condensation.


Assuntos
Materiais Biomiméticos/química , Membrana Celular/química , Membranas Artificiais , Modelos Químicos , Transição de Fase , Sindecana-4/química , Animais , Bovinos , Células Cultivadas , Ratos , Sindecana-4/metabolismo
5.
Oncotarget ; 8(10): 16851-16874, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-28187434

RESUMO

Cancer progression is associated with an evolving tissue interface of direct epithelial-tumor microenvironment interactions. In biopsies of human breast tumors, extensive alterations in molecular pathways are correlated with cancer staging on both sides of the tumor-stroma interface. These interactions provide a pivotal paracrine signaling to induce malignant phenotype transition, the epithelial-mesenchymal transition (EMT). We explored how the direct contact between platelets-fibrin bundles primes metastasis using platelet-rich plasma (PRP) as a source of growth factors and mimics the provisional fibrin matrix between actively growing breast cancer cells and the tumor stroma. We have demonstrated PRP functions, modulating cell proliferation that is tumor-subtype and cancer cell-type-specific. Epithelial and stromal primary cells were prepared from breast cancer biopsies from 21 women with different cancer subtypes. Cells supplemented with PRP were immunoblotted with anti-phospho and total Src-Tyr-416, FAK-Try-925, E-cadherin, N-cadherin, TGF-ß, Smad2, and Snail monoclonal antibodies. Breast tumor cells from luminal B and HER2 subtypes showed the most malignant profiles and the expression of thrombin and other classes of proteases at levels that were detectable through FRET peptide libraries. The angiogenesis process was investigated in the interface obtained between platelet-fibrin-breast tumor cells co-cultured with HUVEC cells. Luminal B and HER2 cells showed robust endothelial cell capillary-like tubes ex vivo. The studied interface contributes to the attachment of endothelial cells, provides a source of growth factors, and is a solid substrate. Thus, replacement of FBS supplementation with PRP supplementation represents an efficient and simple approach for mimicking the real multifactorial tumor microenvironment.


Assuntos
Plaquetas/patologia , Fibrina/fisiologia , Plasma Rico em Plaquetas/citologia , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/patologia , Progressão da Doença , Células Epiteliais/patologia , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Patológica/patologia , Células Estromais/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA