Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 632(8025): 517-521, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959958

RESUMO

Unconventional quasiparticles emerging in the fractional quantum Hall regime1,2 present the challenge of observing their exotic properties unambiguously. Although the fractional charge of quasiparticles has been demonstrated for nearly three decades3-5, the first convincing evidence of their anyonic quantum statistics has only recently been obtained6,7 and, so far, the so-called scaling dimension that determines the propagation dynamics of the quasiparticles remains elusive. In particular, although the nonlinearity of the tunnelling quasiparticle current should reveal their scaling dimension, the measurements fail to match theory, arguably because this observable is not robust to non-universal complications8-12. Here we expose the scaling dimension from the thermal noise to shot noise crossover and observe an agreement with expectations. Measurements are fitted to the predicted finite-temperature expression involving both the scaling dimension of the quasiparticles and their charge12,13, in contrast to previous charge investigations focusing on the high-bias shot-noise regime14. A systematic analysis, repeated on several constrictions and experimental conditions, consistently matches the theoretical scaling dimensions for the fractional quasiparticles emerging at filling factors ν = 1/3, 2/5 and 2/3. This establishes a central property of fractional quantum Hall anyons and demonstrates a powerful and complementary window into exotic quasiparticles.

2.
J Chem Phys ; 161(4)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39037147

RESUMO

Single layer graphene (SLG) was synthesized via high-quality chemical vapor deposition (CVD) on high-quality copper and subsequently transferred onto SiO2 and on n-GaAs substrates with varying doping electron concentrations (n = 1016, 1017, 5 × 1017, 1018, and 5 × 1018 cm-3). The n-GaAs substrates were grown by molecular beam epitaxy. The optical properties of the SLG were investigated through photoluminescence (PL) and Raman spectroscopy measurements. Carrier concentration n or p and Fermi energy (EF) values in SLG were determined both before and after the transfer onto n-GaAs, and these findings were validated through PL studies. The Raman spectroscopy results indicated an increase in the transfer of electrons from n-GaAs to SLG as the doping electron density in n-GaAs increased. PL analysis revealed a significant change in the bandgap energy (Eg) of n-GaAs due to bandgap narrowing and the Burstein-Moss shift. Our data enable us to determine the energy band diagrams. Upon aligning the energy bands, an increase in transferred carrier density is accompanied by changes in Fermi energies and an increase in the potential barrier (∆U). The increase in ∆U is of significant interest to ensure that charges are directed more efficiently toward the cell's electrical contacts in the case of photovoltaic application. There, they can contribute significantly to the generated electric current, thereby enhancing the performance of a cell. Our results can provide insights into the interaction in graphene-based heterostructures and aid in selecting the best parameters for developing new advanced devices.

3.
Phys Rev Lett ; 130(10): 106201, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962050

RESUMO

Squeezing of the quadratures of the electromagnetic field has been extensively studied in optics and microwaves. However, previous works focused on the generation of squeezed states in a low impedance (Z_{0}≈50 Ω) environment. We report here on the demonstration of the squeezing of bosonic edge magnetoplasmon modes in a quantum Hall conductor whose characteristic impedance is set by the quantum of resistance (R_{K}≈25 kΩ), offering the possibility of an enhanced coupling to low-dimensional quantum conductors. By applying a combination of dc and ac drives to a quantum point contact, we demonstrate squeezing and observe a noise reduction 18% below the vacuum fluctuations. This level of squeezing can be improved by using more complex conductors, such as ac driven quantum dots or mesoscopic capacitors.

4.
Nature ; 536(7614): 58-62, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27488797

RESUMO

In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

5.
Nature ; 526(7572): 233-6, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26450056

RESUMO

Many-body correlations and macroscopic quantum behaviours are fascinating condensed matter problems. A powerful test-bed for the many-body concepts and methods is the Kondo effect, which entails the coupling of a quantum impurity to a continuum of states. It is central in highly correlated systems and can be explored with tunable nanostructures. Although Kondo physics is usually associated with the hybridization of itinerant electrons with microscopic magnetic moments, theory predicts that it can arise whenever degenerate quantum states are coupled to a continuum. Here we demonstrate the previously elusive 'charge' Kondo effect in a hybrid metal-semiconductor implementation of a single-electron transistor, with a quantum pseudospin of 1/2 constituted by two degenerate macroscopic charge states of a metallic island. In contrast to other Kondo nanostructures, each conduction channel connecting the island to an electrode constitutes a distinct and fully tunable Kondo channel, thereby providing unprecedented access to the two-channel Kondo effect and a clear path to multi-channel Kondo physics. Using a weakly coupled probe, we find the renormalization flow, as temperature is reduced, of two Kondo channels competing to screen the charge pseudospin. This provides a direct view of how the predicted quantum phase transition develops across the symmetric quantum critical point. Detuning the pseudospin away from degeneracy, we demonstrate, on a fully characterized device, quantitative agreement with the predictions for the finite-temperature crossover from quantum criticality.

6.
Nature ; 514(7524): 603-7, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25355360

RESUMO

The complete knowledge of a quantum state allows the prediction of the probability of all possible measurement outcomes, a crucial step in quantum mechanics. It can be provided by tomographic methods which have been applied to atomic, molecular, spin and photonic states. For optical or microwave photons, standard tomography is obtained by mixing the unknown state with a large-amplitude coherent photon field. However, for fermions such as electrons in condensed matter, this approach is not applicable because fermionic fields are limited to small amplitudes (at most one particle per state), and so far no determination of an electron wavefunction has been made. Recent proposals involving quantum conductors suggest that the wavefunction can be obtained by measuring the time-dependent current of electronic wave interferometers or the current noise of electronic Hanbury-Brown/Twiss interferometers. Here we show that such measurements are possible despite the extreme noise sensitivity required, and present the reconstructed wavefunction quasi-probability, or Wigner distribution function, of single electrons injected into a ballistic conductor. Many identical electrons are prepared in well-controlled quantum states called levitons by repeatedly applying Lorentzian voltage pulses to a contact on the conductor. After passing through an electron beam splitter, the levitons are mixed with a weak-amplitude fermionic field formed by a coherent superposition of electron-hole pairs generated by a small alternating current with a frequency that is a multiple of the voltage pulse frequency. Antibunching of the electrons and holes with the levitons at the beam splitter changes the leviton partition statistics, and the noise variations provide the energy density matrix elements of the levitons. This demonstration of quantum tomography makes the developing field of electron quantum optics with ballistic conductors a new test-bed for quantum information with fermions. These results may find direct application in probing the entanglement of electron flying quantum bits, electron decoherence and electron interactions. They could also be applied to cold fermionic (or spin-1/2) atoms.

7.
Phys Rev Lett ; 123(26): 263602, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31951435

RESUMO

We report, for the first time, the observation of spontaneous parametric down-conversion (SPDC) free of phase matching (momentum conservation). We alleviate the need to conserve momentum by exploiting the position-momentum uncertainty relation and using a planar geometry source, a 6 µm thick layer of lithium niobate. Nonphase-matched SPDC opens up a new platform on which to investigate fundamental quantum effects but it also has practical applications. The ultrasmall thickness leads to a frequency spectrum an order of magnitude broader than that of phase-matched SPDC. The strong two-photon correlations are still preserved due to energy conservation. This results in ultrashort temporal correlation widths and huge frequency entanglement. The studies we make here can be considered as the initial steps into the emerging field of nonlinear quantum optics on the microscale and nanoscale.

8.
Nanotechnology ; 30(21): 214005, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-30736031

RESUMO

Optical properties of GaN nanowires (NWs) grown on chemical vapor deposited-graphene transferred on an amorphous support are reported. The growth temperature was optimized to achieve a high NW density with a perfect selectivity with respect to a SiO2 surface. The growth temperature window was found to be rather narrow (815°C ± 5°C). Steady-state and time-resolved photoluminescence from GaN NWs grown on graphene was compared with the results for GaN NWs grown on conventional substrates within the same molecular beam epitaxy reactor showing a comparable optical quality for different substrates. Growth at temperatures above 820 °C led to a strong NW density reduction accompanied with a diameter narrowing. This morphology change leads to a spectral blueshift of the donor-bound exciton emission line due to either surface stress or dielectric confinement. Graphene multi-layered micro-domains were explored as a way to arrange GaN NWs in a hollow hexagonal pattern. The NWs grown on these domains show a luminescence spectral linewidth as low as 0.28 meV (close to the set-up resolution limit).

9.
Nature ; 502(7473): 659-63, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24153178

RESUMO

The on-demand generation of pure quantum excitations is important for the operation of quantum systems, but it is particularly difficult for a system of fermions. This is because any perturbation affects all states below the Fermi energy, resulting in a complex superposition of particle and hole excitations. However, it was predicted nearly 20 years ago that a Lorentzian time-dependent potential with quantized flux generates a minimal excitation with only one particle and no hole. Here we report that such quasiparticles (hereafter termed levitons) can be generated on demand in a conductor by applying voltage pulses to a contact. Partitioning the excitations with an electronic beam splitter generates a current noise that we use to measure their number. Minimal-excitation states are observed for Lorentzian pulses, whereas for other pulse shapes there are significant contributions from holes. Further identification of levitons is provided in the energy domain with shot-noise spectroscopy, and in the time domain with electronic Hong-Ou-Mandel noise correlations. The latter, obtained by colliding synchronized levitons on a beam splitter, exemplifies the potential use of levitons for quantum information: using linear electron quantum optics in ballistic conductors, it is possible to imagine flying-qubit operation in which the Fermi statistics are exploited to entangle synchronized electrons emitted by distinct sources. Compared with electron sources based on quantum dots, the generation of levitons does not require delicate nanolithography, considerably simplifying the circuitry for scalability. Levitons are not limited to carrying a single charge, and so in a broader context n-particle levitons could find application in the study of full electron counting statistics. But they can also carry a fraction of charge if they are implemented in Luttinger liquids or in fractional quantum Hall edge channels; this allows the study of Abelian and non-Abelian quasiparticles in the time domain. Finally, the generation technique could be applied to cold atomic gases, leading to the possibility of atomic levitons.

10.
Rev Neurol (Paris) ; 174(9): 621-627, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30098800

RESUMO

Gilles de la Tourette syndrome (GTS) is a chronic tic disorder characterised by the presence of multiple motor and vocal tics with onset during development. Tics are the most common hyperkinetic symptoms in childhood and co-morbid behavioural conditions (especially obsessive-compulsive disorder, attention-deficit and hyperactivity disorder, affective symptoms, and impulsivity) are present in the majority of patients. Although GTS is no longer considered a rare medical curiosity, its exact pathophysiology remains elusive. Recent research on the brain correlates of the subjective 'urge to tic' has highlighted the role of extra-motor pathways within the brain mechanisms of tic generation. Advances in our understanding of the pathophysiology of GTS can pave the way to the implementation of more effective treatment strategies for this heterogeneous neurobehavioral condition. Finally, the development of GTS-specific instruments for the assessment of health-related quality of life has allowed more standardised assessments across the lifespan, capturing the impact of both tics and behavioural co-morbidities.


Assuntos
Neuropsiquiatria , Síndrome de Tourette/fisiopatologia , Síndrome de Tourette/psicologia , Encéfalo/fisiopatologia , Humanos , Qualidade de Vida , Síndrome de Tourette/epidemiologia , Síndrome de Tourette/terapia
11.
Psychol Med ; 47(3): 507-517, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27776574

RESUMO

BACKGROUND: Previous studies suggest that adults with Tourette syndrome (TS) can respond unconventionally on tasks involving social cognition. We therefore hypothesized that these patients would exhibit different neural responses to healthy controls in response to emotionally salient expressions of human eyes. METHOD: Twenty-five adults with TS and 25 matched healthy controls were scanned using fMRI during the standard version of the Reading the Mind in the Eyes Task which requires mental state judgements, and a novel comparison version requiring judgements about age. RESULTS: During prompted mental state recognition, greater activity was apparent in TS within left orbitofrontal cortex, posterior cingulate, right amygdala and right temporo-parietal junction (TPJ), while reduced activity was apparent in regions including left inferior parietal cortex. Age judgement elicited greater activity in TS within precuneus, medial prefrontal and temporal regions involved in mentalizing. The interaction between group and task revealed differential activity in areas including right inferior frontal gyrus. Task-related activity in the TPJ covaried with global ratings of the urge to tic. CONCLUSIONS: While recognizing mental states, adults with TS exhibit greater activity than controls in brain areas involved in the processing of negative emotion, in addition to reduced activity in regions associated with the attribution of agency. In addition, increased recruitment of areas involved in mental state reasoning is apparent in these patients when mentalizing is not a task requirement. Our findings highlight differential neural reactivity in response to emotive social cues in TS, which may interact with tic expression.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Córtex Cerebral/fisiopatologia , Emoções/fisiologia , Empatia/fisiologia , Percepção Social , Teoria da Mente/fisiologia , Síndrome de Tourette/fisiopatologia , Adolescente , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Phys Rev Lett ; 116(10): 106801, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-27015501

RESUMO

We report on an absolute measurement of the electronic spin polarization of the ν=1 integer quantum Hall state. The spin polarization is extracted in the vicinity of ν=1 (including at exactly ν=1) via resistive NMR experiments performed at different magnetic fields (electron densities) and Zeeman energy configurations. At the lowest magnetic fields, the polarization is found to be complete in a narrow region around ν=1. Increasing the magnetic field (electron density) induces a significant depolarization of the system, which we attribute to a transition between the quantum Hall ferromagnet and the Skyrmion glass phase theoretically expected as the ratio between Coulomb interactions and disorder is increased. These observations account for the fragility of the polarization previously observed in high mobility 2D electron gas and experimentally demonstrate the existence of an optimal amount of disorder to stabilize the ferromagnetic state.

14.
Phys Rev Lett ; 116(13): 136801, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27081995

RESUMO

The Kondo effect is the many-body screening of a local spin by a cloud of electrons at very low temperature. It has been proposed as an explanation of the zero-bias anomaly in quantum point contacts where interactions drive a spontaneous charge localization. However, the Kondo origin of this anomaly remains under debate, and additional experimental evidence is necessary. Here we report on the first phase-sensitive measurement of the zero-bias anomaly in quantum point contacts using a scanning gate microscope to create an electronic interferometer. We observe an abrupt shift of the interference fringes by half a period in the bias range of the zero-bias anomaly, a behavior which cannot be reproduced by single-particle models. We instead relate it to the phase shift experienced by electrons scattering off a Kondo system. Our experiment therefore provides new evidence of this many-body effect in quantum point contacts.

15.
Nat Commun ; 15(1): 6578, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097568

RESUMO

Anyons are exotic low-dimensional quasiparticles whose unconventional quantum statistics extend the binary particle division into fermions and bosons. The fractional quantum Hall regime provides a natural host, with the first convincing anyon signatures recently observed through interferometry and cross-correlations of colliding beams. However, the fractional regime is rife with experimental complications, such as an anomalous tunneling density of states, which impede the manipulation of anyons. Here we show experimentally that the canonical integer quantum Hall regime can provide a robust anyon platform. Exploiting the Coulomb interaction between two copropagating quantum Hall channels, an electron injected into one channel splits into two fractional charges behaving as abelian anyons. Their unconventional statistics is revealed by negative cross-correlations between dilute quasiparticle beams. Similarly to fractional quantum Hall observations, we show that the negative signal stems from a time-domain braiding process, here involving the incident fractional quasiparticles and spontaneously generated electron-hole pairs. Beyond the dilute limit, a theoretical understanding is achieved via the edge magnetoplasmon description of interacting integer quantum Hall channels. Our findings establish that, counter-intuitively, the integer quantum Hall regime provides a platform of choice for exploring and manipulating quasiparticles with fractional quantum statistics.

16.
Eur J Neurol ; 20(11): 1467-70, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23745973

RESUMO

BACKGROUND AND PURPOSE: Coprolalia is a complex socially inappropriate vocal tic most frequently reported in the context of Tourette syndrome (TS) and widely portrayed as a cardinal characteristic of this condition throughout popular culture. This study investigated which clinical factors may predispose some patients with TS to experience coprolalia and the impact of this symptom on quality of life. METHODS: Participants were 60 patients with TS (39 males, mean age 32.15, SD 14.1 years) of whom 50% reported mental coprolalia (urges) and 33% reported actual involuntary swearing as a tic. Relationships between the presence of coprolalia and a range of clinical variables including severity of tics, obsessive-compulsive symptoms, attention problems, anxiety, depression, premonitory urges for tics and quality of life were investigated. RESULTS: The presence of urges to utter obscene language was significantly related to non-obscene socially inappropriate symptoms and self-reported tic severity. Although experiencing socially inappropriate urges in general was correlated with the presence of mental coprolalia, only the presence of more severe tics was a good indicator of outbursts of obscene vocal tics. Having coprolalia was related to significantly poorer quality of life in TS. CONCLUSIONS: As outbursts of coprolalia exert a specific negative impact on quality of life clinicians should consider improvement in this symptom during evaluation of treatment efficacy.


Assuntos
Transtornos Disruptivos, de Controle do Impulso e da Conduta/etiologia , Qualidade de Vida/psicologia , Transtornos do Comportamento Social/etiologia , Síndrome de Tourette/complicações , Comportamento Verbal/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Nat Commun ; 14(1): 7263, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945575

RESUMO

The Kondo effect, deriving from a local magnetic impurity mediating electron-electron interactions, constitutes a flourishing basis for understanding a large variety of intricate many-body problems. Its experimental implementation in tunable circuits has made possible important advances through well-controlled investigations. However, these have mostly concerned transport properties, whereas thermodynamic observations - notably the fundamental measurement of the spin of the Kondo impurity - remain elusive in test-bed circuits. Here, with a novel combination of a 'charge' Kondo circuit with a charge sensor, we directly observe the state of the impurity and its progressive screening. We establish the universal renormalization flow from a single free spin to a screened singlet, the associated reduction in the magnetization, and the relationship between scaling Kondo temperature and microscopic parameters. In our device, a Kondo pseudospin is realized by two degenerate charge states of a metallic island, which we measure with a non-invasive, capacitively coupled charge sensor. Such pseudospin probe of an engineered Kondo system opens the way to the thermodynamic investigation of many exotic quantum states, including the clear observation of Majorana zero modes through their fractional entropy.

18.
Nat Commun ; 14(1): 514, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720855

RESUMO

The scattering of exotic quasiparticles may follow different rules than electrons. In the fractional quantum Hall regime, a quantum point contact (QPC) provides a source of quasiparticles with field effect selectable charges and statistics, which can be scattered on an 'analyzer' QPC to investigate these rules. Remarkably, for incident quasiparticles dissimilar to those naturally transmitted across the analyzer, electrical conduction conserves neither the nature nor the number of the quasiparticles. In contrast with standard elastic scattering, theory predicts the emergence of a mechanism akin to the Andreev reflection at a normal-superconductor interface. Here, we observe the predicted Andreev-like reflection of an e/3 quasiparticle into a - 2e/3 hole accompanied by the transmission of an e quasielectron. Combining shot noise and cross-correlation measurements, we independently determine the charge of the different particles and ascertain the coincidence of quasielectron and fractional hole. The present work advances our understanding on the unconventional behavior of fractional quasiparticles, with implications toward the generation of novel quasi-particles/holes and non-local entanglements.

19.
Phys Rev Lett ; 109(2): 026803, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-23030194

RESUMO

We demonstrate a direct approach to investigate heat transport in the fractional quantum Hall regime. At a filling factor of ν=4/3, we inject power at quantum point contacts and detect the related heating from the activated current through a quantum dot. The experiment reveals a chargeless heat transport from a significant heating that occurs upstream of the power injection point, in the absence of a concomitant electrical current. By tuning in situ the edge path, we show that the chargeless heat transport does not follow the reverse direction of the electrical current path along the edge. This unexpected heat conduction, whose mechanism remains to be elucidated, may play an important role in the physics of the fractional quantum Hall regime.

20.
Phys Rev Lett ; 108(19): 196803, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-23003072

RESUMO

We have realized a quantum optics like Hanbury Brown-Twiss (HBT) experiment by partitioning, on an electronic beam splitter, single elementary electronic excitations produced one by one by an on-demand emitter. We show that the measurement of the output currents correlations in the HBT geometry provides a direct counting, at the single charge level, of the elementary excitations (electron-hole pairs) generated by the emitter at each cycle. We observe the antibunching of low energy excitations emitted by the source with thermal excitations of the Fermi sea already present in the input leads of the splitter, which suppresses their contribution to the partition noise. This effect is used to probe the energy distribution of the emitted wave packets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA