Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; : 100838, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251023

RESUMO

Dopaminergic neurons participate in fundamental physiological processes and are the cell type primarily affected in Parkinson's disease. Their analysis is challenging due to the intricate nature of their function, involvement in diverse neurological processes, heterogeneity and localization in deep brain regions. Consequently, most of the research on the protein dynamics of dopaminergic neurons has been performed in animal cells ex vivo. Here we use iPSC-derived human mid-brain specific dopaminergic neurons to study general features of their proteome biology and provide datasets for protein turnover and dynamics, including a human axonal translatome. We cover the proteome to a depth of 9,409 proteins and use dynamic SILAC to measure the half-life of more than 4,300 proteins. We report uniform turnover rates of conserved cytosolic protein complexes such as the proteasome and map the variable rates of turnover of the respiratory chain complexes in these cells. We use differential dynamic SILAC labeling in combination with microfluidic devices to analyze local protein synthesis and transport between axons and soma. We report 105 potentially novel axonal markers and detect translocation of 269 proteins between axons and the soma in the time frame of our analysis (120 hours). Importantly, we provide evidence for local synthesis of 154 proteins in the axon and their retrograde transport to the soma, among them several proteins involved in RNA editing such as ADAR1 and the RNA helicase DHX30, involved in the assembly of mitochondrial ribosomes. Our study provides a workflow and resource for future applications of quantitative proteomics in iPSC-derived human neurons.

2.
Expert Rev Proteomics ; 20(12): 469-482, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116637

RESUMO

INTRODUCTION: Protein phosphorylation is a critical post-translational modification involved in the regulation of numerous cellular processes from signal transduction to modulation of enzyme activities. Knowledge of dynamic changes of phosphorylation levels during biological processes, under various treatments or between healthy and disease models is fundamental for understanding the role of each phosphorylation event. Thereby, LC-MS/MS based technologies in combination with quantitative proteomics strategies evolved as a powerful strategy to investigate the function of individual protein phosphorylation events. AREAS COVERED: State-of-the-art labeling techniques including stable isotope and isobaric labeling provide precise and accurate quantification of phosphorylation events. Here, we review the strengths and limitations of recent quantification methods and provide examples based on current studies, how quantitative phosphoproteomics can be further optimized for enhanced analytic depth, dynamic range, site localization, and data integrity. Specifically, reducing the input material demands is key to a broader implementation of quantitative phosphoproteomics, not least for clinical samples. EXPERT OPINION: Despite quantitative phosphoproteomics is one of the most thriving fields in the proteomics world, many challenges still have to be overcome to facilitate even deeper and more comprehensive analyses as required in the current research, especially at single cell levels and in clinical diagnostics.


Assuntos
Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Fosforilação , Espectrometria de Massa com Cromatografia Líquida , Fosfopeptídeos/metabolismo , Fosfoproteínas/análise
3.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38816213

RESUMO

In cells, mitochondria undergo constant fusion and fission. An essential factor for fission is the mammalian dynamin-related protein 1 (Drp1). Dysregulation of Drp1 is associated with neurodegenerative diseases including Parkinson's, cardiovascular diseases and cancer, making Drp1 a pivotal biomarker for monitoring mitochondrial status and potential pathophysiological conditions. Here, we developed nanobodies (Nbs) as versatile binding molecules for proteomics, advanced microscopy and live cell imaging of Drp1. To specifically enrich endogenous Drp1 with interacting proteins for proteomics, we functionalized high-affinity Nbs into advanced capture matrices. Furthermore, we detected Drp1 by bivalent Nbs combined with site-directed fluorophore labelling in super-resolution STORM microscopy. For real-time imaging of Drp1, we intracellularly expressed fluorescently labelled Nbs, so-called chromobodies (Cbs). To improve the signal-to-noise ratio, we further converted Cbs into a "turnover-accelerated" format. With these imaging probes, we visualized the dynamics of endogenous Drp1 upon compound-induced mitochondrial fission in living cells. Considering the wide range of research applications, the presented Nb toolset will open up new possibilities for advanced functional studies of Drp1 in disease-relevant models.


Assuntos
Dinaminas , Mitocôndrias , Dinâmica Mitocondrial , Anticorpos de Domínio Único , Dinaminas/metabolismo , Humanos , Anticorpos de Domínio Único/metabolismo , Anticorpos de Domínio Único/imunologia , Mitocôndrias/metabolismo , Proteômica/métodos , Animais , Ligação Proteica , Células HeLa , Proteínas Mitocondriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA